No. of Printed Pages : 6
BET-011
DIPLOMA IN CIVIL ENGINEERING (DCLE(G))/ DIPLOMA IN MECHANICAL ENGINEERING (DME) / DCLEVI / DMEVI / DELVI / DECVI /

DCSVI / ACCLEVI / ACMEVI / ACELVI / ACECVI / ACCSVI

Term-End Examination

00541
December, 2019

BET-011 : MATHEMATICS - I

Time: 2 hours
Maximum Marks : 70
Note: Question number 1 is compulsory. Attempt any four questions out of the remaining questions. Use of scientific calculator is permitted.

1. Choose the correct answer from the given four alternatives.

$$
7 \times 2=14
$$

(i) $\cos 60^{\circ}+\sin 30^{\circ}+\cos ^{2} 30^{\circ}$ is equal to
(a) $\frac{7}{4}$
(b) $\frac{4}{7}$
(c) $\frac{6}{7}$
(d) $\frac{2 \sqrt{3}}{21}$
(ii) If the angle of elevation of the tower at a distance of 300 m from the point of observation is 60°, then the height of the tower is
(a) 300 m
(b) $300 \sqrt{3} \mathrm{~m}$
(c) 150 m
(d) $150 \sqrt{3} \mathrm{~m}$
(iii) Slope of a horizontal line is
(a) Undefined
(b) -1
(c) 0
(d) None of the above
(iv) What is the meaning of the following shape in a flow chart?

(a) Terminal box
(b) Input/Output box
(c) Decision box
(d) Calculation/Assignment box
(v) If a circle passes through (0,0), ($a, 0$) and $(0, b)$, then the coordinates of the centre are (a) $\left(\frac{\mathrm{a}}{2}, \frac{\mathrm{~b}}{2}\right)$
(b) $\left(\frac{b}{2}, \frac{a}{2}\right)$
(c) (a, b)
(d) (b, a)
(vi) Which of the following is not an example of a scalar?
(a) Work
(b) Force
(c) Power
(d) Time
(vii) The angle between the vectors
$2 \hat{i}-3 \hat{j}+5 \hat{k}$ and $-2 \hat{i}+2 \hat{j}+2 \hat{k}$ is
(a) 90°
(b) 120°
(c) 0°
(d) $\tan ^{-1} \frac{3}{4}$
2. (a) Determine the focus and the directrix of the parabola $\mathrm{y}^{2}=8 \mathrm{x}$.
(b) Determine the eccentricity of the ellipse

$$
\frac{x^{2}}{64}+\frac{y^{2}}{28}=1
$$

(c) Compute the value of

$$
\log _{16} 8+\log _{27} 9-\log _{125} 25 . \quad 4+5+5
$$

3. (a) If one root of the equation $\mathrm{x}^{2}+\mathrm{px}+12=0$ is 4 , while the equation $x^{2}+p x+q=0$ has equal roots, then find the value of 2 .
(b) A person standing on the bank of a river observes that the angle of elevation of the top of a tree on the opposite bank of the river is 60° and when he moves 40 m away from the tree, the angle of elevation becomes 30°. Determine the breadth of the river.
(c) If ${ }^{n} C_{12}={ }^{n} C_{8}$, then find out the value of n.
$4+5+5$
4. (a) Prove that:

$$
\left(1-\sin ^{2} \theta\right) \tan ^{2} \theta=\sin ^{2} \theta
$$

(b) If $\cos \theta=\frac{3}{5}$, then prove that

$$
\frac{\sin \theta \tan \theta+1}{2 \tan ^{2} \theta}=\frac{93}{160} .
$$

(c) Find the equation of the circle which passes through $(4,1)$ and $(6,5)$ and has its centre on the line $4 x+y=16$. $4+5+5$
5. (a) What is the volume of the rectangular parallelepiped formed by the vectors $\hat{i}, 2 \hat{j}$ and $3 \hat{\mathbf{k}}$?
(b) Find the value of

$$
\log \left\{\log _{a b} a+\frac{1}{\log _{b} a b}\right\}
$$

(c) Show that the vectors $\mathbf{A}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ and

$$
\mathbf{B}=-6 \hat{\mathbf{i}}+9 \hat{\mathbf{j}}+3 \hat{\mathbf{k}} \text { are parallel. } \quad 4+5+5
$$

6. (a) If $\frac{\sqrt{3}-1}{\sqrt{3}+1}+\frac{\sqrt{3}+1}{\sqrt{3}-1}=a+b \sqrt{3}$, find a and b.
(b) If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are three distinct numbers and $\frac{\log x}{y-z}=\frac{\log y}{z-x}=\frac{\log z}{x-y}$, show that $x^{x} y^{y} z^{z}=1$.
(c) Three numbers are in the ratio of $2: 5: 7$. If 7 is subtracted from the second, the resulting numbers form an arithmetic sequence. Determine the original numbers. $4+5+5$
7. (a) A geometric sequence has first term 3 and last term 48. If each term is twice the previous term, find the number of terms and the sum of the geometric sequence.
(b) Find the term independent of x in the expansion of

$$
\left(2 x-\frac{1}{x}\right)^{10}
$$

(c) Find the equation of the circle which is concentric with

$$
x^{2}+y^{2}-8 x+12 y+43=0
$$

and which passes through (6, 2).
$4+5+5$

