05584

No. of Printed Pages : 5
MCS-033

MCA (Revised)

Term-End Examination, 2019

MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time: 2 Hours]
[Maximum Marks : 50
Note : Question No. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Find linear/non-linear, homogenous/nonhomogenous, constant coefficients/not constants, degree of the following recurrence
relations :
(i)

$$
a_{n}=(1.05) a_{n-1}
$$

$$
\begin{equation*}
a_{n}=a_{n-1}+a_{n-2}+a_{n-3}+2^{n-3} \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
a_{n}=n a_{n-1}+n^{2} a_{n-2}+a_{n-1}, a_{n-2} \tag{iii}
\end{equation*}
$$

(b) Solve the following recurrence relation:

$$
t_{n}-3 t_{n-1}-4 t_{n-2}=0 \text { for } n>1
$$

$$
\begin{aligned}
& t_{0}=0 \\
& t_{1}=1
\end{aligned}
$$

(c) Find the generating function for the following

$$
\begin{equation*}
\text { sequence } 1,1,1,1,1,1,0,0,0 \tag{3}
\end{equation*}
$$

(d) Determine and explain whether the given pair of graphs is isomorphic or not :

(e) For the following graph, determine whether Ore's theorem can be used to show that the graph has a Hamiltonian circuit :

(f) What is plannar graph ? Explain whether the following Graph is plannar or not :

4

2.
(a) Solve the following recurrence relation :

$$
\begin{aligned}
& t_{n}-5 t_{n-1}+7 t_{n-2}-3 t_{n-3}=0 \text { for } n>2 \\
& \text { with } t_{0}=1, t_{1}=2 \text { and } t_{2}=3
\end{aligned}
$$

(b) Determine whether the given graph has an Euler circuit :

(c) What is chromatic number? Find the chromatic number of the complete bipartite graph $\boldsymbol{k}_{2,3}$. [2]
3. (a) Explain whether the following graph is a Hamiltonian graph or not :

(b) Define r-regular graph. Construct a 4-regular graph with 12 vertices.
(c) Find the generating function for the following sequence:
$0,1,-2,3,-4,5,-6, \ldots \ldots \ldots$
4.
(a) Solve the recurrence relation $a_{n}=a_{n-1}+n a_{0}=3$ using the substitution method.
(b) Find the chromatic number of the complete graph with five vertices (i.e. k_{5}).
(c) What is edge coloring ? Color the edges of graph k_{3}.
5. (a) Give an example of a subgraph H of a graph G with $\delta(G)<\delta(H)$ and $\Delta H<\Delta(G)$.
(b) Draw the complement of the following graph: [2]

(c) Solve the following recurrence relation:

$$
a_{n+2}=3 a_{n+1}, a_{0}=4
$$

