MCA (Revised)

Term-End Examination, 2019

MCS-031 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 3 Hours]

[Maximum Marks : 100
Note : Question No. 1 is compulsory. Attempt any three from the remaining questions.

1. (a) Illustrate the heap sort algorithm on the sequence $<151,98,138,76,99,200,16>$.
(b) Give an analysis of Merge-sort. For simplicity assume that the number of elements i.e. n is an exact power of two.
(c) Solve the recurrence equation :

$$
T(n)= \begin{cases}2 T\left(\frac{n}{2}\right)+0\left(n^{2}\right), & n>1 \\ 1, & n \leq 1\end{cases}
$$

(d) List and explain any five properties of regular expressions.
(e) Using Dijkstra's algorithm, find the minimum distance of all the nodes from node b which is taken as the source node, for the following graph :

(f) Using Dynamic programming technique, find out minimum number of coins required to collect Rs. 8 out of the coins of denominations

$$
\begin{equation*}
1.4,6 \text {. } \tag{5}
\end{equation*}
$$

(g) Explain Halting problem of Turing Machine with an example.
2. (a) Multiply 10752×5318 using Karatsuba's method. Analyse the running time of the algorithm used.
(b) Define Turing Machine. Design a Turing Machine which accept the Language $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$. [10]
3. (a) Explain the following problems together with their respective significance :
(i) Undecidable problem
(ii) NP-Hard problem
(b) What is MinMax Algorithm ? Explain how Alpha-Beta pruning helps in improving MinMax Algorithm.
4. (a) Explain the Kruskal-algorithm for Minimum Spanning Tree (MST) construction.
(b) Show the MST corresponding to the following adjacency matrix representation of a graph : [5]

	a	b	c	d	e
a	-	1	15	-	5
b	1	-	2	-	10
c	15	2	-	8	6
d	-	-	8	-	3
e	5	10	6	3	-

(c) Differentiate between NP-Complete and NP-Hard problem. Show that CLIQUE problem is NPComplete.
5. (a) Explain the Meaning and the language describe by each of the following regular expression : [6]
(i) $\quad(a+b)^{*}$
(ii) $a b^{*} a^{*}(a+b)$
(iii) $\quad a b(a+b)^{*}$

Where ' $*$ ' is a Kleen closure.
(b) Show that:
(i) $\quad 2^{n}=0\left(5^{n}\right)$
(ii) $\quad n=0\left(n^{\prime \prime}\right)$
(c) Explain limitations of Strassen's algorithm for matrix multiplications.

