5674

MCS-031

Number of Printed Pages: 4

MCA (Revised)

Term-End Examination, 2019

MCS-031 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 3 Hours]

[Maximum Marks: 100

Note : Question No. 1 is **compulsory**. Attempt **any three** from the remaining questions.

- 1. (a) Illustrate the heap sort algorithm on the sequence < 151, 98, 138, 76, 99, 200, 16 >. [5]
 - (b) Give an analysis of Merge-sort. For simplicity assume that the number of elements i.e. n is an exact power of two. [5]
 - (c) Solve the recurrence equation : [5]

$$T(n) = \begin{cases} 2T\left(\frac{n}{2}\right) + 0(n^2) &, n > 1\\ 1 &, n \le 1 \end{cases}$$

(d) List and explain any five properties of regular expressions. [5]

MCS-031/7000

Using Dijkstra's algorithm, find the minimum distance of all the nodes from node b which is taken as the source node, for the following graph:

- (f) Using Dynamic programming technique, find out minimum number of coins required to collect Rs. 8 out of the coins of denominations
 1.4,6. [5]
- (g) Explain Halting problem of Turing Machine with an example. [5]
- (a) Multiply 10752×5318 using Karatsuba's method.
 Analyse the running time of the algorithm used.
 [10]
 - (b) Define Turing Machine. Design a Turing Machine which accept the Language $L = \{a^n b^n \mid n \ge 1\}$. [10]

MCS-031/7000

2.

(2)

- 3. (a) Explain the following problems together with their respective significance : [5+5=10]
 - (i) Undecidable problem
 - (ii) NP-Hard problem
 - (b) What is MinMax Algorithm ? Explain how
 Alpha-Beta pruning helps in improving MinMax
 Algorithm. [10]
 - (a) Explain the Kruskal-algorithm for Minimum Spanning Tree (MST) construction. [5]
 - (b) Show the MST corresponding to the following adjacency matrix representation of a graph : [5]

	а	b	С	d	е
a	-	1	15	-	5
b	1	-	2	-	10
С	15	2	-	8	6
d	-	-	8	-	3
е	5	10	6	3	-

 (c) Differentiate between NP-Complete and NP-Hard problem. Show that CLIQUE problem is NP-Complete. [10]

MCS-031/7000

4

(3)

[P.T.O.]

- 5. (a) Explain the Meaning and the language describe
 by each of the following regular expression : [6]
 - (i) $(a+b)^*$
 - (ii) $ab^*a^*(a+b)$
 - (iii) $ab(a+b)^*$

Where '*' is a Kleen closure.

(b) Show that :

(i) $2^n = 0(5^n)$

(ii)
$$| n = 0(n^n)$$

 (c) Explain limitations of Strassen's algorithm for matrix multiplications. [6]

----- X -----

MCS-031/7000

(4)

[8]