577304

No. of Printed Pages : 4
MCS-013

M. C. A. (REVISED)/B. C. A. (REVISED) (MCA/BCA)

Term-End Examination
December, 2019
MCS-013 : DISCRETE MATHEMATICS
Time: 2 Hours
Maximum Marks : 50
Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1. (a) Construct the truth table for the formula:

$$
\alpha=(P \rightarrow(Q \rightarrow R) \rightarrow((P \rightarrow Q) \rightarrow(P \rightarrow R))
$$

Check whether it is a tautology or not . 5
(b) Show that $\sqrt{2}$ is irrational.
(c) Given $\mathrm{A}=\{1,3,5,7\}, \mathrm{B}=\{2,3,5,8\}$. List all the elements of $(A \cap B) \times(B-A) .3$
(d) Show that the function $f(x)=x^{3}$ and $g(x)=x^{1 / 3}$ for all $x \in \mathrm{R}$ are inverse of one another.
(e) Give the direct proof of the statement:
"The product of two odd integers is odd."
(f) How many license plate containing two letter followed by three digit can be formed? If the letters as well as digits can be repeated. 3
2. (a) Find the power set of: 2

$$
\mathrm{A}=\{a, b, c, d\}
$$

(b) In a group of students, 70 have a personal computer, 120 have a personal stereo and 41 have both. How many own at least one of these device ? Draw an appropriate Venn diagram. 4
(c) ${ }^{1000} \mathrm{C}_{98}={ }^{999} \mathrm{C}_{97}+{ }^{x} \mathrm{C}_{901}$. Find x.
3. (a) Draw logical circuit for the following logical expression :

$$
x_{1} \wedge x_{2}^{\prime}
$$

(b) Find the probability of getting the sum 9 or

$$
11 \text { in a single throw of two dice. } 3
$$

(c) A drawer contains ten black and ten white socks. What is the least no. of socks one must pull out to be sure to get a matched pair?
4. (a) A problem of discrete mathematics is given to three students whose chances of solving it are $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$. What is the probability that exactly one of them solves it? 3
(b) A house has 4 doors and 10 windows. In how many ways can a thief rob the house. by entering through a window and exiting through a door?
(c) A committee of 2 hawkers and 3 shopkeepers is to formed from 7 hawkers and 10 shopkeepers. Find the no. of ways in which this can be done if a particular shopkeeper is included and a particular hawker is excluded.
5. (a) Show that 5 divides $n^{5}-n$, where n is a non-negative integer.
(b) Write the negation of the following statement :
"If he studies he will pass the examination."
(c) Give the output of the given circuit: 4

