Number of Printed Pages : 3

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination, 2019

CS-73: THEORY OF COMPUTER SCIENCE

Time: 3 Hours]

Maximum Marks: 75

Note : Question No.1 is **compulsory**. Attempt **any three** guestions from the rest.

- 1. (a)
 Prove that if L & M are regular language then L-M is regular.

 [5]
 - (b) The Teansition table of NDFA M is defined by following table. Construct a DFA equivalent to M. [5]

	State	0	1	2
→	q ₀	q ₁ , q ₄	q ₄	q ₂ ,q ₃
	q ₁	-	q4	-
	q ₂	-	-	q ₂ ,q ₃
	(q_3)	-	q4	-
	q4	-	-	-

(c) Write the CFG for regular expression : [5]

 $r = 0^* 1(0 + 1)^*$

(d) Design the Push down Auto mata for the language: [5]

$$\mathbf{L} = \left\{ \mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{m}} / \mathbf{n} > \mathbf{m} \ge \mathbf{0} \right\}$$

(e) Design a Turing Machine that reads a strings $\{0,1\}^*$ & erases, the right most sumbol. [5]

(f)
$$\frac{n^2}{2} - 3n = \theta(n^2)$$
 [5]

 $6n^3 \neq \theta(n^2)$

- 2. (a) If x & y are regular over \sum then x \cap y is also regular over \sum . [8]
 - (b) Design a F.A. which accepts the language $L = \{\omega \mid \omega \text{ has both on even no of 0's & even no of 1's over alphabet } \Sigma = \{0,1\}$. [7]

3. (a) Show that $L=\{a^p \mid p \text{ is prime}\}$ is not a CFG. [8]

(b) Design a CFG for the language [7]

 $L = \{ (0^n \ 1^n / n \ge 0) \bigcup (1^n \ 0^n / n \ge 0) \}$

4. (a) Explain the following with example : [5+5=10]

- (i) Non deteministic PDA
- (ii) Recursive function theory
- (b) Design a Turing machine which works as an eraser. [5]
- 5. (a) Discuss the following NP complete problems : [5+5=10]
 - (i) Traveling salesman problem
 - (ii) Hamiltonian cycle problem
 - (b) Show that x^{y} is primitive recursive function. [5]

----- X -----