BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination, 2019

CS-73: THEORY OF COMPUTER SCIENCE

Time: 3 Hours]
[Maximum Marks : 75

Note : Question No. 1 is compulsory. Attempt any three questions from the rest.
1.
(a) Prove that if L \& M are regular language then $L-M$ is regular.
(b) The Teansition table of NDFA M is defined by following table. Construct a DFA equivalent to
M.
[5]

\rightarrow| | State | 0 | 1 |
| :---: | :---: | :---: | :---: |
| 2 | | | |
| q_{0} | q_{1}, q_{4} | q_{4} | q_{2}, q_{3} |
| q_{1} | - | q_{4} | - |
| | q_{2} | - | - |
| q_{2}, q_{3} | | | |
| q_{3} | - | q_{4} | - |
| q_{4} | - | - | - |

(c) Write the CFG for regular expression:

$$
r=0^{*} 1(0+1)^{*}
$$

(d) Design the Push down Auto mata for the language :

$$
L=\left\{a^{n} b^{m} / n>m \geq 0\right\}
$$

(e) Design a Turing Machine that reads a strings $\{0,1\}^{*} \&$ erases, the right most sumbol.

$$
\begin{equation*}
\frac{n^{2}}{2}-3 n=\theta\left(n^{2}\right) \tag{f}
\end{equation*}
$$

$$
6 n^{3} \neq \theta\left(n^{2}\right)
$$

2.

(a) If $x \& y$ are regular over Σ then $x \cap y$ is also regular over \sum.
(b) Design a F.A. which accepts the language $L=\{\omega \mid \omega$ has both on even no of 0's \& even no of 1 's over alphabet $\Sigma=\{0,1\}$.
3. (a) Show that $L=\left\{a^{p} \mid p\right.$ is prime $\}$ is not a CFG.
(b) Design a CFG for the language :

$$
L=\left\{\left(0^{n} 1^{n} / n \geq 0\right) \cup\left(1^{n} 0^{n} / n \geq 0\right)\right\}
$$

4. (a) Explain the following with example: $[5+5=10]$
(i) Non deteministic PDA
(ii) Recursive function theory
(b) Design a Turing machine which works as an eraser.
5. (a) Discuss the following NP complete problems :

$$
[5+5=10]
$$

(i) Traveling salesman problem
(ii) Hamiltonian cycle problem
(b) Show that x^{y} is primitive recursive function.

