BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination, 2019

CS-71: COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time: 3 Hours
Maximum Marks : 75
Note : Question No. 1 is Compulsory. Attempt any three questions from question number 2 to 5 . Use of scientific calculator is permitted.
1.
(a)
(i)
If 0.667 is the approximate value of $\frac{2}{3}$,
find the absolute, relative, and percentage errors.
(ii) Round off the following numbers correct to four significant figures :

$$
\begin{aligned}
& 98.3763 ; 799.252 ; 0.065738 \\
& 6657.692000
\end{aligned}
$$

(b) If $f(x)=x^{3}$, find the value of $f[a, b, c]$ using divide and difference table.
(c) Solve the following system of equations by using Cramer's rule :

$$
\begin{aligned}
& x+2 y+3 z=6 \\
& 3 x-2 y+z=2 \\
& 4 x+2 y+z=7
\end{aligned}
$$

(d) A river is 80 m wide. The depth ' d ' in meters at a distance x metres from one bank is given by the following table :

$x:$	0	10	20	30	40	50	60	70	80
$d:$	0	4	7	9	12	15	14	8	3

Find approximate area of the cross-section by using Simpson's $\frac{1}{3}$ rd rule.
(e) Prove that $\mu^{2}=1+\frac{1}{4} \delta^{2}$.
(f) Discuss the merits and demerits of Direct and Iterative methods.
2. (a) From the following table, find f(0.7) approximately by using Newton's backward formula :

x	0.1	0.2	0.3	0.4	0.5	0.6
$f(x)$	2.68	3.04	3.38	3.68	3.96	4.21

(b) Solve the IPP $y^{\prime}=2 y+3 e^{t}, y(0)=0$ using classical R-K method of $O\left(b^{4}\right)$.
(c) Find by Newton-Raphson method, the real root of the equation $x e^{x}=2$ correct to three decimal places.
3.
(a) Evaluate $\int_{0}^{\mathrm{b}} \frac{1}{1+\mathrm{x}^{2}} \mathrm{dx}$ by Trapezoidal rule; take $h=1.0$.
(b) Find a root of the equation $x^{3}-4 x-9=0$ correct to 3 decimal places using Bisection method.
(c) Find a real root of the equation $\mathrm{xe}^{\mathrm{x}}=\cos \mathrm{x}$ correct to three decimals using fixed point method.
4. (a) Solve the following system of linear equation by Gauss elimination method :

$$
\begin{aligned}
& 2 x-6 y+8 z=24 \\
& 5 x+4 y-3 z=2 \\
& 3 x+y+2 z=16
\end{aligned}
$$

(b) Solve the following system of linear equations by Gauss-Seide iterative method :

$$
\begin{aligned}
& x+2 y+z=8 \\
& 2 x+3 y+4 z=20 \\
& 4 x+3 y+2 z=16
\end{aligned}
$$

(c) Use Euler's method to approximate y when $x=0.1$ given that $\frac{d y}{d x}=\frac{y-x}{y+x}$, given that
$y(0)=1$ by taking $h=0.05$.
5. (a) Solve the following system of linear equation by using Jacobi's iteration method :

$$
\begin{align*}
& 2 x+y+z=4 \tag{5}\\
& x+2 y+z=4 \\
& x+y+2 z=4
\end{align*}
$$

(b) Find an approximate value of the root of the equation $\mathrm{x}^{3}+\mathrm{x}-1=0$ near $\mathrm{x}=1$ using the Regula-Falsi method.
(c) Apply Lagrange's interpolation formula, find $f(x)$ from the following data :

x	0	1	3	4
$f(x)$	-12	0	6	12

Also compute f(2.5).

