No. of Printed Pages : 5

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination, 2019

CS-71: COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time: 3 Hours

Maximum Marks: 75

0681

CS-71

Note : Question No. 1 is Compulsory. Attempt any three questions from question number 2 to 5. Use of scientific calculator is permitted.

1.	(a)	(i)	If 0.667 is the approximate value of $\frac{2}{3}$,				
			find the absolute, relative, and percentage errors.	[3]			
		(ii)	Round off the following numbers con to four significant figures :	rrect [2]			
		· ·	98.3763 ; 799.252 ; 0.06573 6657.692000	8;			

(1)

CS-71/700

- (b) If $f(x) = x^3$, find the value of f[a, b, c] using divide and difference table. [5]
- (c) Solve the following system of equations by using
 Cramer's rule : [5]

 $\mathbf{x} + 2\mathbf{y} + 3\mathbf{z} = 6$

$$3x - 2y + z = 2$$

4x + 2y + z = 7

(d) A river is 80 m wide. The depth 'd' in meters at a distance x metres from one bank is given by the following table :

x:	0	10	20	30	40	50	60	70	80
d :	0	4	7	9	12	15	14	8	3

Find approximate area of the cross-section by

using Simpson's
$$\frac{1}{3}$$
rd rule. [5]

(e) Prove that
$$\mu^2 = 1 + \frac{1}{4}\delta^2$$
. [5]

(f) Discuss the merits and demerits of Direct and Iterative methods. [5]

CS-71/700

(2)

(a) From the following table, find f(0.7) approximately
 by using Newton's backward formula : [5]

X	0.1	0.2	0.3	0.4	0.5	0.6
f(x)	2.68	3.04	3.38	3.68	3.96	4.21

- (b) Solve the IPP $y' = 2y+3e^t$, y(0)=0 using classical R-K method of O(b⁴). [5]
- (c) Find by Newton-Raphson method, the real root
 of the equation xe^x=2 correct to three decimal
 places. [5]

(a) Evaluate
$$\int_{0}^{b} \frac{1}{1+x^{2}} dx$$
 by Trapezoidal rule ; take
h=1.0. [5]

- (b) Find a root of the equation $x^3 4x 9 = 0$ correct to 3 decimal places using Bisection method. [5]
- (c) Find a real root of the equation $xe^x = \cos x$ correct to three decimals using fixed point method. [5]

CS-71/700

2.

3.

(3)

[P.T.O.]

4. (a) Solve the following system of linear equation by Gauss elimination method : [5]

$$2x - 6y + 8z = 24$$

$$5x + 4y - 3z = 2$$

$$3x + y + 2z = 16$$

(b) Solve the following system of linear equations by
 Gauss-Seide iterative method : [5]

$$x + 2y + z = 8$$

$$2x + 3y + 4z = 20$$

$$4x + 3y + 2z = 16$$

- (c) Use Euler's method to approximate y when x = 0.1 given that $\frac{dy}{dx} = \frac{y - x}{y + x}$, given that y(0) = 1 by taking h = 0.05. [5]
- 5. (a) Solve the following system of linear equation by using Jacobi's iteration method : [5]

$$2x + y + z = 4$$
$$x + 2y + z = 4$$
$$x + y + 2z = 4$$

CS-71/700

4)

- (b) Find an approximate value of the root of the equation $x^3 + x 1 = 0$ near x = 1 using the Regula-Falsi method. [5]
- (c) Apply Lagrange's interpolation formula, find f(x) from the following data : [5]

X	0	1	3	4
f(x)	-12	0	6	12

Also compute f(2.5).

----- X -----