BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination, 2019

BCS-042 : INTRODUCTION TO ALGORITHM DESIGN

Time: 2 Hours
Maximum Marks : 50

Note : Question no. 1 is compulsory. Answer any three questions from the rest.

1. (a) Let $f(n)$ and $g(n)$ are two positive functions, using basic definition of Big Oh ("O") and Theta (θ), prove/disprove the following :

$$
\begin{equation*}
\max \{f(n), g(n)\}=\theta(f(n)+g(n)) \tag{i}
\end{equation*}
$$

(ii) $\quad 2^{n}=O\left(2^{n+1}\right)$
(b) Solve the following Recurrence using Recursion tree method :

$$
T(n)=2 T(n-1)+1
$$

Find tight solution of the Recurrence.
(c) Explain general algorithm to solve any problem using Greedy techniques. Write any two characteristics of Greedy Algorithm.
(d) Write Algorithm to solve Knapsack (fractional) problem using Greedy Method. Find the running time of the algorithm also.
(a) Define minimum spanning tree. Apply Kruskal's Algorithm to find minimum cost spanning tree for the following graph :

(b) Write bubble sort aigorithm and find its time complexity in worst case.
3. (a) For the following graph write DFS (sequence of traversal) from the node A :

(b) Apply master method to solve the following recurrence relation :
(i) $\quad T(n)=2 T\left(\frac{n}{2}\right)+n$
(ii) $\quad T(n)=3 T\left(\frac{n}{4}\right)+n \log n$
4. Explain Dijkstra's Algorithm to find a single source shortest path in a given graph. Apply Dijkstra's Algorithm and find the shortest path from source vertex ' A ' to rest of the vertices :

5. Differentiate between the following with respect to method of solving a problem and time complexity :
(a) Depth-First-Search (DFS) Vs. Breath-FirstSearch (BFS)
(b) Bellman-Ford Algorithm Vs Dijkstra's Algorithm for single source shortest path.

