6384

Number of Printed Pages : 4

BCS-040

BACHELOR OF COMPUTER APPLICATIONS

(BCA) (Revised)

Term-End Examination, 2019

BCS-040 : STATISTICAL TECHNIQUES

Time : 2 Hours
Maximum Marks : 50
Note : Attempt both sections, i.e. Section A and Section B. Attempt any four questions from Section A. Attempt any three questions from Section B. Non-scientific calculator is allowed.

SECTION-A

1. The marks obtained by 25 BCA students in statistical techniques paper out of 50 are given below :

48	10	18	02	27
23	17	23	34	35
35	37	42	37	22
42	24	26	40	08
25	13	20	23	35

(a) Present the above data in the form of continuous frequency distribution by taking the first class interval as (0-10).
(b) Prepare histogram of the obtained distribution.[3]
2. The following table gives daily wages (in rupees) of workers in a certain commercial organization :

Daily Wages	$200-300$	$300-400$	$400-500$	$500-600$	$600-700$
No. of Workers	10	12	20	5	3

Calculate median wages of the workers.
3. A problem of statistics is given to three students A, B and C whose chances of solving it are $0.3,0.5$ and 0.6 respectively. What is the probability that the problem will be solved?
4. The probability distribution of a discrete random variable X is as follows :

X	0	1	2	3	4	5
$p(x)$	0	C	C	$2 C$	$3 C$	C

Find:
(a) The constant C
(b) $\quad P[X \leq 3]$
5. A filling machine is set to pour 952 ml (milliliter) of oil into bottles. The filled amount is normally distributed with mean of 952 ml and standard deviation of 4 ml . Find the probability that a bottle contains oil between 952 and 956 ml . (Given $\mathrm{P}[0 \leq \mathrm{z} \leq 1]=0.3413$)

SECTION-B

6. Explain any two of the folowing :
(a) Criteria for a good estimator
(b) Stratified random sampling
(c) Systematic random sampling
7. Three salesmen were posted in different areas of a company. The number of units sold by them are given below :

A	B	C
10	12	5
7	8	10
9	5	6
10	7	5

On the basis of the above information, can it be concluded that there is a significant difference in the performance of the salesmen at 5% level of significance ? (Given $\mathrm{F}_{(2,9), 5 \%}=4.26$).
8. 1000 students at college level were graded according to their IQ level and economic condition of their parents. The abtained data are as follows :

Economic Condition	IQ Level	
	High	Low
Poor	240	160
Rich	460	140

Test that IQ level of the students is independent to the economic condition of their parents at 1% level of significance.
(Given $\chi^{2}(4), 1 \%=13.28, \chi^{2}(1), 1 \%=6.63$)
9. The Pulse rate of 6 people were recorded before and after taking a new drug. The obtained puise rates are given below :

Before	68	71	84	93	67	74
After	71	70	81	97	73	80

Can you say there is a significant increase in the pulse rate at 5% level of significance after consuming the new drug ? $\left(\right.$ Given $\left._{(5), 5 \%}=2.015, t_{(6), 5 \%}=1.943\right)$

