Number of Printed Pages: 4

BCS-040

BACHELOR OF COMPUTER APPLICATIONS

(BCA) (Revised)

Term-End Examination, 2019

BCS-040 : STATISTICAL TECHNIQUES

Time: 2 Hours

Maximum Marks : 50

Note : Attempt both sections, i.e. Section A and Section B. Attempt any four questions from Section A. Attempt any three questions from Section B. Non-scientific calculator is allowed.

SECTION-A

1. The marks obtained by 25 BCA students in statistical techniques paper out of 50 are given below :

48	10	18	02	27	
23	17	23	34	35	
35	37	42	37	22	
42	24	26	40	08	
25	13	20	23	35	

BCS-040/6500

- Present the above data in the form of continuous frequency distribution by taking the first class interval as (0-10). [2]
- (b) Prepare histogram of the obtained distribution.[3]
- 2. The following table gives daily wages (in rupees) of workers in a certain commercial organization :

Daily Wages	200-300	300-400	400-500	500-600	600-700	
No. of Workers	10	12	20	[.] 5	3	

Calculate median wages of the workers.

[5]

- A problem of statistics is given to three students A, B and C whose chances of solving it are 0.3, 0.5 and 0.6 respectively. What is the probability that the problem will be solved ? [5]
- The probability distribution of a discrete random variable
 X is as follows : [2+3]

Х	0	1	2	3	4	5
p(x)	0	С	C •	2C	3C	С

Find :

(a) The constant C

(b) $P[X \le 3]$ BCS-040/6500 (2) 5. A filling machine is set to pour 952 ml (milliliter) of oil into bottles. The filled amount is normally distributed with mean of 952 ml and standard deviation of 4 ml. Find the probability that a bottle contains oil between 952 and 956 ml. (Given $P[0 \le z \le 1] = 0.3413$) [5]

SECTION-B

- 6. Explain **any two** of the folowing : [5+5]
 - (a) Criteria for a good estimator
 - (b) Stratified random sampling
 - (c) Systematic random sampling
- 7. Three salesmen were posted in different areas of a company. The number of units sold by them are given below :

A	В	С
10	<u>,</u> 12	5
7	8	10
9	5	6
10	7	5

On the basis of the above information, can it be concluded that there is a significant difference in the performance of the salesmen at 5% level of significance? (Given $F_{(2,9)}$, 5% = 4.26). [10]

BCS-040/6500

(-3)

[P.T.O.]

 1000 students at college level were graded according to their IQ level and economic condition of their parents. The abtained data are as follows : [10]

Economic	IQ Level			
Condition	High	Low		
Poor	240	160		
Rich	460	140		

Test that IQ level of the students is independent to the economic condition of their parents at 1% level of significance.

(Given
$$\chi^2_{(4),1\%} = 13.28$$
, $\chi^2_{(1),1\%} = 6.63$)

 The Pulse rate of 6 people were recorded before and after taking a new drug. The obtained pulse rates are given below : [10]

Before	68	71	84	93	67	74
After	71	70	81	97	73	80

Can you say there is a significant increase in the pulse rate at 5% level of significance after consuming the new drug ? (Given $t_{(5), 5\%} = 2.015$, $t_{(6), 5\%} = 1.943$)

BCS-040/6500

(4)