BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination, 2019

BCS-012 : BASIC MATHEMATICS

Time: $\mathbf{3}$ Hours]
[Maximum Marks : 100

Note: Question no. 1 is compulsory. Attempt any three questions from remaining four questions.

1. (a) Show that : $\left|\begin{array}{lll}1 & a & b c \\ 1 & b & c a \\ 1 & c & a b\end{array}\right|=\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|$
(b) Using determinants, find the area of the triangle whose vertices are (2,1), ($3,-2$) and ($-4,-3$).
(c) Use mathematical induction to show that

$$
\begin{equation*}
1+3+5+\ldots \ldots \ldots+(2 n-1)=n^{2} \forall n \in N \tag{5}
\end{equation*}
$$

(d) If α, β are roots of $x^{2}-3 a x+a^{2}=0$, find a if

$$
\begin{equation*}
\alpha^{2}+\beta^{2}=\frac{1}{7} . \tag{5}
\end{equation*}
$$

(e) If $1, w, w^{\mathbf{2}}$ are cube roots of unity, find the value of : $(2+w)\left(2+w^{2}\right)\left(2+w^{22}\right)\left(2+w^{26}\right)$
(f) If 9th term of an A.P. is 25 and 17th term of the A.P. is 41 , find its 20 th term.
(g) If $y=3 x e^{-x}$, find $\frac{d^{2} y}{d x^{2}}$
(h) Evaluate $\int x \sqrt{2 x+3} d x$.
2. (a) If $A=\left[\begin{array}{ccc}0 & 3 & -1 \\ 2 & 1 & 3 \\ -1 & 0 & 0\end{array}\right]$, show that $A(\operatorname{adj} A)=|A| I_{3}$.
(b) If $A=\left(\begin{array}{ccc}3 & -1 & 0 \\ 2 & 1 & 1 \\ 1 & 1 & 0\end{array}\right)$, show that A is equivalent to I_{3}.
(c) If $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$, show that $A^{2}-4 A+1=0$, where I and O are identity and null matrix respectively of order 2. Also, find A^{5}.
(d) Use principle of mathematical induction to show that $2^{3 n}-1$ is divisible by 7 .
3. (a) Find all solutions of : $z^{2}=z$
(z is conjugate of z)
(b) Solve the equation :
$x^{3}-13 x^{2}+15 x+189=0$ if one root of the equation exceeds other by 2 .
(c) Solve the inequality: $\left|\frac{2 x-3}{4}\right| \leq \frac{2}{3}$
(d) If $y=\ln \left[e^{x}\left(\frac{x-1}{x+1}\right)^{3 / 2}\right]$, find $\frac{d y}{d x}$.
4. (a) If $a>0$, find local maximum and local minimum values of $f(x)=x^{3}-2 a x^{2}+a^{2} x$.
(b) Evaluate $\int \frac{d x}{3+e^{x}}$.
(c) Evaluate $\int_{-1}^{2} \frac{x}{\left(x^{2}+1\right)^{2}} d x$
(d) Find the area bounded by the x-axis, $y=3+4 x$ and the ordinates $x=1$ and $x=2$, by using integration.
(a) If the mid-points of the consecutive sides of a quadrilateral are joined, then show that the quadrilateral formed is a parallelogram.
(b) If

If $\vec{a}=\hat{i}+2 \hat{j}-\hat{k}, \vec{b}=\hat{j}+\hat{k}, \vec{c}=3 \hat{i}-\hat{j}+k$, find

$$
\begin{equation*}
(\vec{a} \times \vec{b}) \times \vec{c} . \tag{5}
\end{equation*}
$$

(c) Find equation of line passing through ($-1,-2,3$) and perpendicular to the lines :

$$
\begin{equation*}
\frac{x}{1}=\frac{y}{3}=\frac{z}{2} \text { and } \frac{x+2}{-3}=\frac{y-1}{5}=\frac{z+1}{2} \tag{5}
\end{equation*}
$$

(d) Maximize :

$$
Z=2 x+3 y
$$

Subject to:

$$
\begin{aligned}
& x+y \geq 1 \\
& 2 x+y \leq 4 \\
& x+2 y \leq 4, \\
& x \geq 0, y \geq 0
\end{aligned}
$$

----- X -----

