M．Sc．（MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE）

M．Sc．（MACS）
Term－End Examination
ロロロロて
December， 2018

MMTE－005 ：CODING THEORY

Time ： 2 hours
Maximum Marks ： 50
（Weightage ：50\％）
Note：Answer any four questions from questions no． 1 to 5．Question no． 6 is compulsory．All question carry equal marks．Calculators are not allowed．

1．（a）Define the following，giving an example of each ：
（i）Linear code
（ii）Dual of a code
（iii）Parity check matrix
（b）Compute the 3 －cyclotomic cosets modulo 8.4
2．（a）Construct a parity check matrix of the $(7,4)$ binary Hamming code．Using this parity check matrix，decode the following vectors， and then check that your decoded vectors are actually codewords ：
（i）（0011010），
（ii）（1011110）．
(b) Consider a binary code with generator matrix

$$
\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right] .
$$

Reduce the generator matrix to standard form. Find the parity check matrix of the code using it.
3. (a) Let be the $(2,1)$ convolutional code with generator matrix

$$
\mathrm{G}=\left[\begin{array}{ll}
1+\mathrm{D}+\mathrm{D}^{2} & 1+\mathrm{D}^{2}
\end{array}\right]
$$

(i) Give the resulting codeword $\left[\begin{array}{ll}\mathrm{C}_{1} & \mathrm{C}_{2}\end{array}\right]$ if 110101 is encoded. Also give the interleaved output.
(ii) Give the equations for $\mathrm{C}_{1}(\mathrm{i})$ and $\mathrm{C}_{2}(\mathrm{i})$ for the encoder G, where $i=1,2$.
(b) Define a perfect code. Is the code with the following parity check matrix a perfect code? Give reasons for your answer.
$\mathrm{H}=\left[\begin{array}{lllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right]$
How many errors can correct?
4
4. (a) Write all possible generator polynomials of a (7, 4)-cyclic code. Also find the generator matrix and the parity check matrix of the $(7,4)$ cyclic code generated by $\mathrm{X}^{3}+\mathrm{X}^{2}+1$ over GF(2).
(b) Construct the generating idempotents of the duadic codes of length 5 over \mathbf{F}_{4}.
5. (a) Show that a BCH code of designed distance δ has minimum weight at least δ.
(b) Let C be the [5, 2] binary code generated by $\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1\end{array}\right]$. Find the weight distribution of t. Find the weight distribution of C^{\perp} by using the MacWilliams Identity.
6. Which of the following statements are True and which are False ? Justify your answer with a short proof or a counter example.
(a) The code rate of Hamming code of length

$$
2^{l}-1 \text { is } 1+\frac{l}{2^{l}-1}
$$

(b) Every code of even length is self-dual.
(c) $\quad \mathrm{F}_{4}$ is a subfield of F_{8}.
(d) There is no quadratic residue code of length 5 over \mathbf{F}_{4}.
(e) Extending a code does not increase the length of the code.

