M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination
December, 2018

MMTE-001 : GRAPH THEORY

Time : 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note: Question no. 1 is compulsory. Answer any four questions from questions no. 2 to 6. Electronic computing devices are not allowed. Draw diagrams wherever necessary.

1. State whether the following statements are true or false. Justify your answers with a short proof or a counter-example.
(a) A simple graph with ten vertices has at most 45 edges only.
(b) Any connected 2-regular graph is a cycle.
(c) There are graphs G with $\kappa(G)<\kappa^{\prime}(a)$.
(d) Deleting some edge-cut of size 3 in the Petersen graph isolates a vertex.
(e) Every planar graph is three-colourable.

MMTE-001
2. (a) Let $V=\{u, v, w, x, y, z\}$ and $E=\{u v, u z, v w, w x, x y, u y, v x, w z, y z\}$. Check whether the graph $G(V, E)$ is regular or not. If it is regular, what is the degree of regularity?
(b) Find the chromatic number of the graph described in part (a).
(c) Define the girth of a graph and find the girth of the Petersen graph.
3. (a) Prove that an edge in a graph is a cut-edge if and only if it belongs to no cycle.
(b) A connected graph is Eulerian if and only if every vertex of it is of even degree.
4. (a) If G is an acyclic graph with n vertices and $\mathrm{n}-1$ edges, then it is a tree.
(b) Prove that every simple graph with at least two vertices has two vertices of equal degree.
(c) If G is a simple graph of diameter at least three, then prove that diameter $(\bar{G}) \leq 3$.
5. (a) Prove that a matching M in a graph G is a maximum matching in G if and only if G has no M -augmenting path.
(b) If G is a simple graph, prove that $\kappa(G) \leq \kappa^{\prime}(G) \leq \delta(G)$, with usual notations.
6. (a) For the following graph, find
(i) the clique number,
(ii) the independence number, and
(iii) a perfect matching, if any.

(b) Examine the planarity of the graph given in part (a) and draw a plane embedding, if it is planar.
(c) Define Hamiltonian closure of a graph and prove that it is well-defined.

