M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination
December, 2018

MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note: Question no. 1 is compulsory. Attempt any four questions out of questions no. 2 to 7. Use of calculator is not allowed.

1. State whether the following statements are True or False. Justify your answers with the help of a short proof or a counter example. No marks will be awarded without justification.
$5 \times 2=10$
(a) The Lipschitz constant for the function

$$
\begin{gathered}
f(x, y)=x^{2}|y|, \\
\text { defined on }|x| \leq 1,|y| \leq 1 \text { is equal to } 1 .
\end{gathered}
$$

(b) The Legendre Polynomial of degree n, at $x=0$ has the value

$$
P_{n}(0)=\left[\begin{array}{cc}
(-1)^{\frac{n}{2}} \cdot \frac{1,3,5 \ldots(2 n-1)}{2,4,6 \ldots 2 n}, & \text { if } n \text { is even } \\
0, & \text { if } n \text { is odd }
\end{array}\right.
$$

(c) $\mathcal{L}^{-1}\left\{\cot ^{-1} \mathrm{~s}\right\}=\mathrm{t} \sin \mathrm{t}$
(d) The second order Runge-Kutta method when applied to IVP $y^{\prime}=-100 \mathrm{y}, \mathrm{y}(0)=1$ will produce stable results for $0<h<\frac{1}{50}$.
(e) The explicit scheme
$u_{i}^{n+1}=u_{i}^{n}+\lambda\left[u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right], \lambda=\frac{k}{h^{2}}$,
for solving the parabolic equation $u_{t}=u_{x x}$ is stable for $\lambda<1$.
2. (a) Construct the Green's function in terms of hyperbolic functions for the boundary value problem

$$
\begin{equation*}
\mathbf{y}^{\prime \prime}-\mathbf{k}^{2} \mathbf{y}=0, k \neq 0, \mathrm{y}(0)=0=\mathrm{y}(1) \tag{5}
\end{equation*}
$$

(b) Using the relation

$$
\begin{aligned}
& H_{n}(x)=\sum_{k=0}^{[n / 2]} \frac{(-1)^{k}\left\lfloor n(2 x)^{n-2 k}\right.}{\underline{k} \underline{n}-2 k} \\
& \text { where }\left[\frac{n}{2}\right]= \begin{cases}\frac{n}{2}, & \text { if } n \text { is odd } \\
\frac{n-1}{2}, & \text { if } n \text { is even, }\end{cases}
\end{aligned}
$$

find the values of $\mathrm{H}_{2 \mathrm{n}}(0), \mathrm{H}_{2 \mathrm{n}+1}(0), \mathrm{H}_{2 \mathrm{n}}^{\prime}(0)$ and $\mathrm{H}_{2 n+1}^{\prime}(0)$.
3. (a) Find the series solutions, about $x=0$, of the differential equation

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}+\left(x+x^{2}\right) \frac{d y}{d x}+(x-a) y=0 \tag{5}
\end{equation*}
$$

(b) Reduce the second order initial value problem

$$
y^{\prime \prime}=y^{\prime}+3, y(0)=1, y^{\prime}(0)=\sqrt{3}
$$

to a system of first order initial value problems. Hence find $y(0 \cdot 1)$ and $y^{\prime}(0 \cdot 1)$, using Taylor series method of second order using $h=0 \cdot 1$.
4. (a) Find the solution of $\nabla^{2} u=\Delta$ in R subject to the boundary conditions $u(x, y)=x+y$ on Γ, where R is the square $0 \leq x \leq 1,0 \leq y \leq 1$, using the five point formula. Assume that step length is $h=\frac{1}{3}$ along the axis.
(b) Find the Fourier sine transform of the function

$$
\begin{equation*}
f(x)=a x+x^{2}, 0 \leq x \leq a \tag{4}
\end{equation*}
$$

5. (a) Show that the Bessel's function $J_{n}(x)$ satisfies the relation

$$
\begin{equation*}
J_{4}(x)+J_{2}(x)=\frac{6}{x} J_{3}(x) \tag{2}
\end{equation*}
$$

(b) Using Euler's method, solve

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{x}-2 \mathrm{y}, \mathrm{y}(0)=1
$$

Find $\mathrm{y}(0 \cdot 5)$ using $\mathrm{h}=0 \cdot 1$.
(c) Using Laplace transform, solve the IVP

$$
\mathrm{ty}^{\prime \prime}+\mathrm{y}^{\prime}+\mathrm{ty}=0, \mathrm{y}(0)=2, \mathrm{y}^{\prime}(0)=0
$$

You may use the result

$$
\mathcal{L}^{-1}\left[\frac{1}{\sqrt{\mathrm{~s}^{2}+1}}\right]=\mathrm{J}_{0}(\mathrm{t}) \text { where } \mathrm{J}_{0}(\mathrm{t})
$$

is the Bessel's function of order zero.
6. (a) Solve the initial value problem

$$
y^{\prime}=-2 x y^{2}, y(0)=1
$$

with $\mathrm{h}=0.2$ on the interval [$0,0.4$]; using predictor-corrector method

$$
\begin{aligned}
& P: y_{i+1}=y_{i}+\frac{h}{2}\left(3 y_{i}^{\prime}-y_{i-1}^{\prime}\right) \\
& C: y_{i+1}=y_{i}+\frac{h}{2}\left(y_{i+1}^{\prime}+y_{i}^{\prime}\right)
\end{aligned}
$$

Perform two corrector iterations per step and use $y(x)=\frac{1}{1+x^{2}}$ to obtain the starting value.
(b) Using the Fourier transform, solve the initial boundary value problem

$$
\begin{align*}
\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}} & =\frac{\partial^{2} u}{\partial x^{2}},-\infty<x<\infty, t>0 \\
u(x, 0) & =f(x),\left.\frac{\partial u}{\partial t}\right|_{t=0}=0 \tag{5}
\end{align*}
$$

7. (a) Using Crank-Nicolson's method with $\mathrm{h}=\frac{1}{4}$, solve :

$$
\mathrm{u}_{\mathrm{t}}=\frac{1}{16} \mathrm{u}_{\mathrm{xx}}, 0<\mathrm{x}<1, \mathrm{t}>0
$$

$$
\text { given } u(x, 0)=0, u(0, t)=0, u(1, t)=50 t
$$

(b) Show the function $f(x)$, whose Fourier cosine transform is $\frac{\sin \mathrm{a} \alpha}{\alpha}$ is

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{lc}
1, & 0<\mathrm{x}<\mathrm{a} \tag{4}\\
0, & \mathrm{x}>\mathrm{a}
\end{array}\right.
$$

