M.Sc. (MATHEMATICS WITH APPLICATIONS
 IN COMPUTER SCIENCE)
 M.Sc. (MACS)

arrez

Term-End Examination
December, 2018

MMT-006 : FUNCTIONAL ANALYSIS

Time : 2 hours
Maximum Marks : 50
(Weightage : 70\%)
Note: Question no. 6 is compulsory. Attempt any four of the remaining questions. Use of calculators is not allowed. Notations as in the study material.

1. (a) In a normed linear space X, prove that the closed ball, $\overline{\mathbf{u}}(\mathrm{x}, \mathrm{r})$ is a convex set for any $x \in X$, and $r>0$.
(b) State and prove the uniform boundedness principle.
(c) Let $\mathrm{A} \in \mathrm{BL}\left(\mathbf{R}^{3}\right)$ be represented by the matrix
$\left[\begin{array}{ccc}-1 & 1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Find $\sigma(A)$.
2. (a) Prove that $\left(C_{00}, 11 \cdot 11_{p}\right)$ is not a Banach Space for any $1 \leq p \leq \infty$.
(b) State and prove Bessel's inequality for a finite orthonormal set in an inner product space.
(c) Let $\mathrm{X}=\mathbf{C}^{2}$ and $\alpha_{1}, \alpha_{2}, \in \mathbb{C}$. Let $\mathrm{A}: \mathrm{X} \rightarrow \mathrm{X}$ be given by

$$
\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(\alpha_{1} \mathrm{x}_{1}, \alpha_{2} \mathrm{x}_{2}\right), \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathbf{C} .
$$

Prove that
(i) A is normal
(ii) \mathbf{A} is self-adjoint $\Leftrightarrow \alpha_{1}, \alpha_{2} \in \mathbf{R}$
(iii) A is unitary $\Leftrightarrow\left|\alpha_{1}\right|=1=\left|\alpha_{2}\right|$
3. (a) Let Y be a closed subspace of a normed linear space X . Show that X is complete $\Leftrightarrow Y$ and $\frac{X}{Y}$ are complete.
(b) Define a reflexive normed linear space. Prove that if a normed space X is reflexive then its dual space is also reflexive. What about the converse? Justify your answer.
4. (a) Prove that the dual space of l^{∞} contains a proper subspace which is linearly isometric to l^{1}.
(b) Define T: $\left(\mathbf{C}([0,1]), 11 \cdot 11_{\infty}\right) \rightarrow \mathbf{C}$ by

$$
\mathrm{T}_{\mathrm{f}}=\int_{0}^{1} f(\mathrm{t}) \mathrm{dt} .
$$

Show that T is bounded and find $\|\mathrm{T}\|$.
(c) Let $\mathrm{X}=\mathrm{L}^{2}[0,1]$ with $11 \cdot 11_{2}$ given by

$$
\|f\|_{2}=\left(\int_{0}^{1}|f(t)|^{p} d t\right)^{1 / p}, f \in X .
$$

Let f and g be functions given by
$f(t)=t, g(t)=1-t, \forall t \in[0,1]$. Show that $\|\mathrm{f}+\mathrm{g}\|_{2}^{2}+\|\mathrm{f}-\mathrm{g}\|_{2}^{2}=2\left(\|\mathrm{f}\|_{2}^{2}+\|\mathrm{g}\|_{2}^{2}\right)$.
5. (a) Let Y be a subspace of a normed linear space X and let $a \in X$ such that $a \notin \bar{Y}$. Show that $\exists f \in X^{\prime}$ such that $f(y)=0 \forall y \in Y$, $\mathrm{f}(\mathrm{a})=\operatorname{dist}(\mathrm{a}, \overline{\mathrm{Y}})$ and $\|\mathrm{f}\|=1$.
(b) Let $\mathrm{x}_{\mathrm{n}}(\mathrm{t})=\mathrm{t}^{\mathrm{n}}$ for $\mathrm{n}=0,1,2, \ldots,-1 \leq \mathrm{t} \leq 1$. Prove
(i) $\left\{\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots\right\}$ is linearly independent in $L_{2}([-1,1])$.
(ii) Apply the Gram-Schmidt process on $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ to determine the first three vectors in the orthonormal set.
(c) Let X be a normed space, $\mathrm{z} \in \mathrm{X}$ and $\mathrm{f} \in \mathrm{X}^{\prime}$. Show that $T: X \rightarrow X$ defined by $T(x)=f(x) z$, $\mathrm{x} \in \mathrm{X}$ is linear and compact.
6. Are the following statements True or False ? Justify your answers.
(a) If X is a normed linear space over \mathbf{R} and suppose $f(x)=0 \forall f \in X^{\prime}$, then $x=0$.
(b) On an infinite dimensional normed linear space every linear function is continuous.
(c) If $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ is linear, continuous and open, then T is subjective.
(d) In an inner product space if $\mathrm{x} \neq 0$, then $\langle x, y\rangle \neq 0$ for some y.
(e) Any two separable Hilbert spaces need not be isometric.

