M．Sc．（MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE） M．Sc．（MACS）

ロロロア2 Term－End Examination

December， 2018

MMT－005 ：COMPLEX ANALYSIS

Time ： $1 \frac{1}{2}$ hours
Maximum Marks ： 25

Note：Question no． 1 is compulsory．Attempt any three questions from questions no． 2 to 5．Use of calculators are not allowed．

1．State，giving reasons，whether the following statements are True or False ：
（a）The function $f(z)=\bar{z}$ is nowhere differentiable．
（b）The series $\sum_{n=0}^{\infty} \frac{1}{n!} z^{n}$ has radius of convergence zero．
(c) For any simple closed contour C such that $0 \not \subset \mathrm{C}$

$$
\int_{\mathrm{C}} \frac{1}{\mathrm{z}} \mathrm{dz} \neq 0
$$

(d) If $a=e^{i \theta}$, then a^{i} represents infinitely many real numbers.
(e) Inverse mapping of a Mobius transformation is a Mobius transformation.
2. (a) Show that the function

$$
\begin{aligned}
f(z)=f(x, y) & =\frac{x y(x+i y)}{x^{2}+y^{2}}, z \neq 0 \\
& =0, \quad z=0
\end{aligned}
$$

is not differentiable at $\mathrm{z}=0$.
(b) Show that the series $\sum_{n=1}^{\infty} \frac{z^{n+1}}{n}$ converges at all points inside the circle $|z|=1$. What can you say about the convergence on the circle $|z|=1 ?$
3. (a) Consider $f(z)=z^{2}-2 z+4$ and the closed circular region $R=\{z:||z| \leq 2\}$. Find points in R where $|f(z)|$ has its maximum and minimum values.
(b) Evaluate $\int_{\mathrm{C}} \frac{\mathrm{dz}}{\mathrm{z}^{2}}$ where the contour C is the
ellipse $(x-2)^{2}+\frac{1}{4}(y-5)^{2}=1$.
4. (a) Expand $f(z)=\frac{1}{z(z-1)}$ in a Laurent series valid for $1<|z-2|<2$.
(b) Find a linear fractional transformation that maps the points $1, \mathrm{i}$ and -1 on the unit circle $|\mathrm{z}|=1$ onto the points $-1,0,1$ on the real axis. Determine the image of the interior of $|z|<1$ under this transformation.
5. Using contour integration, evaluate

$$
\int_{-\infty}^{\infty} \frac{\sin x}{x\left(x^{2}-2 x+2\right)} d x
$$

