No. of Printed Pages : 3

MMT-002

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

December, 2018

MMT-002 : LINEAR ALGEBRA

Time : $1\frac{1}{2}$ hours

00952

Maximum Marks : 25 (Weightage : 70%)

Note: Question no. 5 is compulsory. Answer any three questions from questions no. 1 to 4. Use of calculators is **not** allowed.

1. Consider the matrix

	[3	2	1]
B =	2	3	1
	1	1	4

- (i) Check whether the matrix is positive definite or not.
- (ii) Write the Jordan canonical form of B.
- (iii) Find a positive semi-definite matrix A such that $A^2 = B$. 1+1+3

MMT-002

1

P.T.O.

2. (a) Determine a quadratic polynomial that best fits the points :

(0, 0), (1, 1), (2, 5), (3, 8).

(b) Prove that if A and B are similar matrices, then their traces are the same.

4

3

 $\mathbf{2}$

3

3. (a) Construct a QR-decomposition for

	1	2	2
X =	1	0	2.
	0	1	1

(b) Let T be the linear transformation from \mathbf{R}^3 to \mathbf{R}^3 given by the matrix $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. Find the

generalised eigenspaces $E_T(2)$ and $E_T^2(2)$.

4. (a) Let $\mathbf{P}_2(\mathbf{R})$ be the real vector space of polynomials of degree ≤ 2 . Let $T: \mathbf{P}_2(\mathbf{R}) \rightarrow \mathbf{P}_2(\mathbf{R}): T(a + bx + cx^2) =$ $(a - c) + (a + c)x + bx^2$. Find $[T]_B$, where $B = \{x^2 + x + 1, x^2 + x, x^2\}$ is a basis of $\mathbf{P}_2(\mathbf{R})$.

> Further, if B' is another basis of $\mathbf{P}_2(\mathbf{R})$, how are $[T]_B$ and $[T]_{B'}$ related ?

MMT-002

(b) Consider the predator-prey system given by

$$\begin{bmatrix} \mathbf{x}_{k+1} \\ \mathbf{y}_{k+1} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \cdot \mathbf{35} & \mathbf{1} \\ \mathbf{0} & \mathbf{2} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{k} \\ \mathbf{y}_{k} \end{bmatrix}$$

where x_k and y_k are the populations of the predators and the prey, respectively, at time k. What is the long-term behaviour of the population vector $\begin{bmatrix} x_k \\ y_k \end{bmatrix}$?

5. Which of the following statements are *True*, and which are *False*? Justify your answers. $5 \times 2=10$

- (a) Two $n \times n$ matrices with the same minimal polynomials have the same Jordan canonical form.
- (b) If the rank of an $n \times n$ matrix is n 1, then at least one of the eigenvalues of A is zero.
- (c) A diagonalisable matrix is also unitarily diagonalisable.
- (d) If the determinant of a matrix is positive, then the matrix is positive definite.
- (e) $\forall A \in \{X \in \mathbf{M}_{n}(\mathbf{R}) | X \text{ is positive definite} and x_{ii} = 1 \forall i = 1, ..., n\}, det(A) is bounded above.$

MMT-002

3

2