M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination
ロ0952

December, 2018

MMT-002 : LINEAR ALGEBRA

Time : $1 \frac{1}{2}$ hours
Maximum Marks : 25
(Weightage : 70\%)
Note: Question no. 5 is compulsory. Answer any three questions from questions no. 1 to 4. Use of calculators is not allowed.

1. Consider the matrix

$$
B=\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 3 & 1 \\
1 & 1 & 4
\end{array}\right]
$$

(i) Check whether the matrix is positive definite or not.
(ii) Write the Jordan canonical form of B.
(iii) Find a positive semi-definite matrix A such that $\mathrm{A}^{2}=\mathrm{B}$.

$$
1+1+3
$$

2. (a) Determine a quadratic polynomial that best fits the points :

$$
(0,0),(1,1),(2,5),(3,8) . \quad 4
$$

(b) Prove that if A and B are similar matrices, then their traces are the same. 1
3. (a) Construct a QR-decomposition for

$$
X=\left[\begin{array}{lll}
1 & 2 & 2 \tag{3}\\
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right]
$$

(b) Let T be the linear transformation from \mathbf{R}^{3} to \mathbf{R}^{3} given by the matrix $\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$. Find the generalised eigenspaces $\mathrm{E}_{\mathrm{T}}(2)$ and $\mathrm{E}_{\mathrm{T}}^{2}(2)$.
4. (a) Let $\mathbf{P}_{2}(\mathbf{R})$ be the real vector space of polynomials of degree ≤ 2. Let $\mathrm{T}: \mathbf{P}_{2}(\mathbf{R}) \rightarrow \mathbf{P}_{2}(\mathbf{R}): \mathrm{T}\left(\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}\right)=$ $(a-c)+(a+c) x+b x^{2}$. Find $[T]_{B}$, where $B=\left\{x^{2}+x+1, x^{2}+x, x^{2}\right\}$ is a basis of $\mathbf{P}_{2}(\mathbf{R})$.
Further, if B^{\prime} is another basis of $\mathbf{P}_{2}(\mathbf{R})$, how are $[\mathrm{T}]_{\mathrm{B}}$ and $[\mathrm{T}]_{\mathrm{B}^{\prime}}$ related ?
(b) Consider the predator-prey system given by
$\left[\begin{array}{l}x_{k+1} \\ y_{k+1}\end{array}\right]=\left[\begin{array}{cc}0 \cdot 35 & 1 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}x_{k} \\ y_{k}\end{array}\right]$
where x_{k} and y_{k} are the populations of the predators and the prey, respectively, at time k. What is the long-term behaviour of the population vector $\left[\begin{array}{l}x_{k} \\ y_{k}\end{array}\right]$?
5. Which of the following statements are True, and which are False? Justify your answers.

$$
5 \times 2=10
$$

(a) Two $\mathrm{n} \times \mathrm{n}$ matrices with the same minimal polynomials have the same Jordan canonical form.
(b) If the rank of an $n \times n$ matrix is $n-1$, then at least one of the eigenvalues of A is zero.
(c) A diagonalisable matrix is also unitarily diagonalisable.
(d) If the determinant of a matrix is positive, then the matrix is positive definite.
(e) $\forall \mathbf{A} \in\left[\mathrm{X} \in \mathbf{M}_{\mathrm{n}}(\mathbf{R}) \mid \mathrm{X}\right.$ is positive definite and $\mathrm{x}_{\mathrm{ii}}=1 \forall \mathrm{i}=1, \ldots, \mathrm{n}$, $\operatorname{det}(\mathrm{A})$ is bounded above.

