M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination December, 2018

00523

MMT-001 : PROGRAMMING AND DATA STRUCTURES

Time: $1\frac{1}{2}$ hours

Maximum Marks: 25

(Weightage: 20%)

Note: Question no. 1 is compulsory. Answer any three questions from questions no. 2 to 5. All programs should be written in 'C' language only. Use of calculators is not permitted.

- 1. Write the output of the following statements of code. Justify your answers with short explanations. $5\times2=10$
 - (a) void main()
 { int const *p = 5;
 printf("%d", ++ (*p));
 - (b) main()
 { char s[] = "man"; int i;
 for (i = 0; s[i]; i++)
 {printf("\n%c%c%c", s[i], *(s + i), *(i + s));}
 }

```
main()
(c)
          static int var = 5;
          printf("%d", var--);
          if (var)
             {main();}
(d)
      main()
         int x = 0;
         for (;;){
             if(x ++ == 4)
               break;
             continue;
         printf("%d", x);
       }
       main()
(e)
       \{ \text{ int } i = -1, j = -1, k = 0, l = 2, m; \}
        m = ++ i &  j ++  k ++ | | 1++;
        printf("%d%d%d%d%d", i, j, k, l, m);
```

2.	(a)	The value of the nodes of binary search tree for in-order and pre-order transversal, respectively, are given below:	
		5, 6, 8, 11, 10, 12, 13	
		11, 6, 5, 8, 12, 10, 13.	
		Construct the binary search tree.	2
	(b)	Write an iterative program to generate the	
		Fibonacci series of n numbers.	3
3.	(a)	Write a recursive function to find the sum of first n positive integers. Show all the recursive calls for $n = 5$.	3
	(b)	Explain the switch-care-default statement with a small example.	2
4.	(a)	What are preprocessor statements? Write a preprocessor statement using #define preprocessor to evaluate function $f(x) = 2x + 3$.	2
	(b)	Write functions to perform following tasks on a singly-linked list data structure:	3
		(i) Insert a node at the beginning	
	* .	(ii) Insert a node at the end	
		(iii) Ingort a made in the middle	

5. (a) Write a 'C' program to evaluate the following function:

$$f(x) = \begin{cases} 2x+1 & \text{if} & x < 5 \\ \\ 3x-4 & \text{if} & 5 \le x \le 15 \\ \\ 0 & \text{otherwise} \end{cases}$$

(b) Differentiate between call-by-value and call-by-reference. 2

3