BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination
ロ1GロL December, 2018

ELECTIVE COURSE : MATHEMATICS MTE-08 : DIFFERENTIAL EQUATIONS

Time : 2 hours
Maximum Marks : 50
(Weightage : 70\%)
Note: Question no. 1 is compulsory. Answer any four questions out of questions no. 2 to 7. Use of calculators is not allowed.

1. State whether the following statements are True or False. Justify your answer with the help of a short proof or a counter-example.
(a) The differential equation of all circles passing through the origin and whose centres lie on the x -axis, is

$$
2 x y y^{\prime}+x^{2}-y^{2}=0
$$

(b) The differential equation

$$
(8 y d x+8 x d y)+x^{2} y^{3}(4 y d x+5 x d y)=0
$$ is exact.

(c) The differential equation

$$
\frac{d y}{d x}+2 x y+x y^{4}=0
$$

is reducible to a linear differential equation.
(d) The equation

$$
y z d x+\left(x^{2} y-x z\right) d y+\left(x^{2} z-x y\right) d z=0
$$

is integrable.
(e) The partial differential equation

$$
u_{t t}=a u_{x x}+2 b u_{x y}+c u_{y y}, \text { where } a, b, c
$$

are positive constants and $b^{2}-a c=0$, is irreducible.
2. (a) Solve :

$$
\left(D^{2}-D D^{\prime}-2 D\right) z=\sin (3 x+4 y)+e^{2 x+y}
$$

(b) Use the method of variation of parameters to solve the following differential equation :

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}+y=\frac{12 e^{x}}{x^{3}} \tag{5}
\end{equation*}
$$

3. (a) Observing that $y=x$, is a particular integral of $2 x^{2} y^{\prime \prime}+x y^{\prime}-y=0$, obtain its general solution.
(b) The rate of change of the price P of a commodity is proportional to the difference between the demand D and the supply S. If $D=a-b P$ and $S=c \sin \beta t$, where a, b, c, β are constants, determine $P(t)$. It is given that at $\mathrm{t}=0, \mathrm{P}=\mathrm{P}_{0}$.
(c) Find the general solution of the equation

$$
(x-y) y^{2} u_{x}-(x-y) x^{2} u_{y}-\left(x^{2}+y^{2}\right) u=0
$$

4. (a) Solve the differential equation

$$
\begin{equation*}
\left(6 x y-3 y^{2}+2 y\right) d x+2(x-y) d y=0 \tag{3}
\end{equation*}
$$

(b) Solve the following differential equation :

$$
\begin{equation*}
\frac{d y}{d x}=\frac{1}{x+y+1} . \tag{2}
\end{equation*}
$$

(c) Find the integral surface of the PDE

$$
x^{2} p+y^{2} q+z^{2}=0
$$

which passes through the hyperbola

$$
\begin{equation*}
x y=x+y, z=1 . \tag{5}
\end{equation*}
$$

5. (a) The surface temperature of a dead body changes at a rate proportional to the difference between the temperature of a body and that of the surrounding environment. The temperature of a dead body is $85^{\circ} \mathrm{F}$ when discovered and $74^{\circ} \mathrm{F}$ two hours later. If the surrounding temperature is $68^{\circ} \mathrm{F}$, find the time when the body was discovered after death (take temperature of the body at the time of death as $\mathbf{9 8 \cdot 6}{ }^{\circ} \mathrm{F}$).
(b) Solve :

$$
x^{2} y^{\prime \prime}-2 x y^{\prime}-4 y=x^{2}+2 \ln x
$$

(c) Give an example of an elliptic partial differential equation of $2^{\text {nd }}$ order, justifying your answer.
6. (a) Solve the equation

$$
\begin{equation*}
(7 y-3 x+3) d y+(3 y-7 x+7) d x=0 \tag{3}
\end{equation*}
$$

(b) Using the method of undetermined coefficients, solve the equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=4 x^{2} \tag{3}
\end{equation*}
$$

(c) Using Charpit's method, solve the equation

$$
\begin{equation*}
z p^{2}-y^{2} p+y^{2} q=0 \tag{4}
\end{equation*}
$$

7. (a) Solve the Laplace equation

$$
\frac{\partial^{2} \mathbf{u}}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

in the rectangle with $u(0, y)=0, u(a, y)=0$, $u(x, b)=0$ and $u(x, 0)=f(x)$.
(b) Solve the equation

$$
6 y^{2} d x-x\left(2 x^{3}+y\right) d y=0
$$

स्नातक उपाधि कार्यक्रम

(बी.डी.पी.)
सत्रांत परीक्षा
दिसम्बर, 2018

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-08: अवकल समीकरण

समय : 2 घण्टे
अधिकतम अंक : 50
(कुल का : 70\%)
नोट: प्रश्न सं. 1 अनिवार्य है । प्रश्न सं. 2 से 7 में से किन्हीं चार प्रश्नों के उत्तर दीजिए / कैल्कुलेटरों के प्रयोग करने की अनुमति नहीं है ।

1. बताइए कि निम्नलिखित कथन सत्य हैं या असत्य। संक्षिप्त उपपत्ति अथवा प्रत्युदाहरण की सहायता से अपने उत्तर की पुष्टि कीजिए। $5 \times 2=10$
(क) मूल-बिन्दु से गुज़रने वाले सभी वृत्तों, जिनके केन्द्र x-अक्ष पर स्थित हैं, का अवकल समीकरण

$$
2 \mathrm{xyy}^{\prime}+\mathrm{x}^{2}-\mathrm{y}^{2}=0 \text { है। }
$$

(ख) अवकल समीकरण

$$
(8 y d x+8 x d y)+x^{2} y^{3}(4 y d x+5 x d y)=0
$$

यथातथ है ।
(ग) अवकल समीकरण

$$
\frac{d y}{d x}+2 x y+x y^{4}=0
$$

को एक रैखिक अवकल समीकरण में समानीत किया जा सकता है।
(घ) अवकल समीकरण

$$
y z d x+\left(x^{2} y-x z\right) d y+\left(x^{2} z-x y\right) d z=0
$$

समाकलनीय है ।
(ङ) आंशिक अवकल समीकरण

$$
\mathrm{u}_{\mathrm{tt}}=\mathrm{au}_{\mathrm{xx}}+2 \mathrm{bu}_{\mathrm{xy}}+\mathrm{cu} \mathrm{u}_{\mathrm{yy}} \text {, जहाँ } \mathrm{a}, \mathrm{~b}, \mathrm{c}
$$

धनात्मक अचर हैं, असमानेय होता है जब $\mathrm{b}^{2}-\mathrm{ac}=0$ हो।
2. (क) हल कीजिए :

$$
\left(D^{2}-D D^{\prime}-2 D\right) z=\sin (3 x+4 y)+e^{2 x+y}
$$

(ख) प्राचल विचरण विधि से निम्नलिखित अवकल समीकरण

$$
\begin{equation*}
\mathrm{y}^{\prime \prime}-2 \mathrm{y}^{\prime}+\mathrm{y}=\frac{12 \mathrm{e}^{x}}{\mathrm{x}^{3}} \text { को हल कीजिए । } \tag{5}
\end{equation*}
$$

3. (क) $y=x$, समीकरण $2 x^{2} y^{\prime \prime}+x y^{\prime}-y=0$ का एक विशेष समाकल है। समीकरण का व्यापक हल प्राप्त कीजिए।
(ख) एक पण्य की कीमत P की परिवर्तन दर उसकी माँग D और आपूर्ति S के अंतर के समानुपाती है । यदि $D=a-b P$ और $S=c \sin \beta t$, जहाँ a, b, c तथा β अचर हों, तो $\mathrm{P}(\mathrm{t})$ ज्ञात कीजिए । यह दिया गया है कि $t=0$ पर $P=P_{0}$.
(ग) समीकरण

$$
(x-y) y^{2} u_{x}-(x-y) x^{2} u_{y}-\left(x^{2}+y^{2}\right) u=0
$$

का व्यापक हल ज्ञात कीजिए।
4. (क) अवकल समीकरण

$$
\left(6 x y-3 y^{2}+2 y\right) d x+2(x-y) d y=0
$$

का हल प्राप्त कीजिए।
3
(ख) निम्नलिखित अवकल समीकरण

$$
\frac{d y}{d x}=\frac{1}{x+y+1} \text { का हल प्राप्त कीजिए । }
$$

(ग) आंशिक अवकल समीकरण

$$
x^{2} p+y^{2} q+z^{2}=0
$$

का समाकल पृष्ठ ज्ञात कीजिए जो अतिपरवलय

$$
x y=x+y, z=1
$$

से होकर जाता है।
5. (क) एक मृतक शरीर की पृष्ठीय तापमान परिवर्तन दर शरीर के तापमान और आसपास के वातावरण के तापमान के अंतर के समानुपाती है । प्राप्त होने पर मृतक शरीर का तापमान $85^{\circ} \mathrm{F}$ और दो घंटे बाद $74^{\circ} \mathrm{F}$ था । यदि आसपास का तापमान $68^{\circ} \mathrm{F}$ हो, तो मृत्यु के कितने समय बाद शरीर प्राप्त हुआ, वह समय ज्ञात कीजिए (मृत्यु के समय शरीर का तापमान $98.6^{\circ} \mathrm{F}$ मान कर चलिए) ।
(ख) हल कीजिए :

$$
x^{2} y^{\prime \prime}-2 x y^{\prime}-4 y=x^{2}+2 \ln x
$$

(ग) द्वितीय कोटि दीर्घवृत्तीय आंशिक अवकल समीकरण का एक उदाहरण दीजिए और अपने उत्तर की पुष्टि कीजिए।
6. (क) समीकरण

$$
(7 y-3 x+3) d y+(3 y-7 x+7) d x=0
$$

का हल प्राप्त कीजिए ।
(ख) अनिर्धारित गुणांक विधि से निम्नलिखित समीकरण

$$
\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=4 x^{2}
$$

का हल प्राप्त कीजिए ।
(ग) चार्पिट विधि से समीकरण

$$
z^{2}-y^{2} p+y^{2} q=0
$$

का हल प्राप्त कीजिए ।
7. (क) $\mathrm{u}(0, \mathrm{y})=0, \mathrm{u}(\mathrm{a}, \mathrm{y})=0, \mathrm{u}(\mathrm{x}, \mathrm{b})=0$ और $u(x, 0)=f(x)$ वाले आयत में लाप्लास समीकरण

$$
\frac{\partial^{2} \mathbf{u}}{\partial \mathbf{x}^{2}}+\frac{\partial^{2} \mathbf{u}}{\partial y^{2}}=0
$$

को हल कीजिए।
(ख) समीकरण

$$
6 y^{2} d x-x\left(2 x^{3}+y\right) d y=0
$$

का हल प्राप्त कीजिए ।

