B.Tech. - VIEP - Mechanical Engineering / B.Tech. Civil Engineering (BTMEVI/BTCLEVI)

Term-End Examination
December, 2018

ロロ263

BIME-004 : FLUID MECHANICS

Time: 3 hours

Maximum Marks : 70
Note: Attempt any five questions. All questions carry equal marks. Use of scientific calculator is permitted. Assume suitable missing data, if any.

1. (a) How is the U-tube manometer used for measurement of fluid pressure ? Explain with a neat sketch.
(b) A hydraulic press has a ram of 30 cm diameter and a plunger of 4 cm diameter. It is used for lifting a weight of 20 kN . Find the force required at the plunger.
2. (a) Obtain the expression for continuity equation for a three-dimensional flow for incompressible fluid.
(b) Explain briefly the working principle of the Bourdon tube pressure gauge with a neat sketch.
3. (a) How will you determine the metacentric height of a floating body experimentally ? Explain with a neat sketch. 7
(b) A circular opening, 3 m diameter in a vertical side of a tank is closed by a disc of 3 m diameter which can rotate about a horizontal diameter. Calculate
(i) the force on the disc, and
(ii) the torque required to maintain the disc in equilibrium in the vertical position when the head of water above the horizontal diameter is 6 m .
4. (a) Distinguish between rotational flow and irrotational flow. Give an example of each.
(b) A horizontal venturimeter with inlet and throat diameters 30 cm and 15 cm respectively is used to measure the flow of water. The reading of a differential manometer connected to inlet and throat is 10 cm of mercury. Determine the rate of flow. Take $\mathrm{C}_{\mathrm{d}}=0.98$.
5. (a) What do you understand by the terms fully submerged orifice and partially submerged orifice? Explain briefly.
(b) Briefly explain the construction and working of an ultrasonic flow meter with a neat sketch.
6. (a) What is a pitot tube ? How will you determine the velocity at any point using pitot tube?
(b) A horizontal pipe of diameter 40 cm is suddenly contracted to a diameter of 20 cm . The pressure intensities in the larger and the smaller pipe are given as $14.715 \mathrm{~N} / \mathrm{cm}^{2}$ and $12.753 \mathrm{~N} / \mathrm{cm}^{2}$ respectively. If $\mathrm{C}_{\mathrm{c}}=0.62$, find the loss of head due to contraction. Also determine the rate of flow of water.
7. (a) Explain the term coefficient of friction. On what factors does this coefficient depend?
(b) A smooth pipe of diameter 300 mm and length 600 m carries water at the rate of $0.04 \mathrm{~m}^{3} / \mathrm{s}$. Determine the head loss due to friction, wall shear stress, center-line velocity and thickness of laminar sub-layer. Take the kinematic viscosity of water as 0.018 stokes.
8. Write short notes on any four of the following :
$4 \times 3 \frac{1}{2}=14$
(a) Turbulent Flow
(b) Spillways and Weirs
(c) Coefficient of Drag and Lift
(d) Couette Flow
(e) Dimensional Analysis
(f) Electromagnetic Flow Meter
