B.Tech. MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) BTCLEVI / BTMEVI / BTELVI / BTCSVI / BTECVI

Term-End Examination
ロロ57.
December, 2018

BME-017 : STRENGTH OF MATERIALS

Time: 3 hours
Maximum Marks : 70
Note: Answer any seven questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. Draw and describe stress-stain curve for mild steel.
2. A steel rod of 3 cm diameter and 5 m long is connected to two grips and the rod is maintained at a temperature of $95^{\circ} \mathrm{C}$. Determine the stress and pull exerted when the temperature falls to $30^{\circ} \mathrm{C}$, if
(i) the ends do not yield, and
(ii) the ends yield by 0.12 cm .
(Take $\mathrm{E}=2 \times 10^{5} \mathrm{MN} / \mathrm{m}^{2}$, and

$$
\alpha=12 \times 10^{-6} /{ }^{\circ} \mathrm{C} .
$$

3. The principal tensile stresses at a point across two perpendicular planes are $100 \mathrm{~N} / \mathrm{mm}^{2}$ and $50 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the normal, tangential and resultant stresses on a plane inclined at 30° to the axis of the minor principal stress.
4. Calculate instantaneous stress produced in a bar $10 \mathrm{~cm}^{2}$ in area and 3 m long by the sudden application of a tensile load of unknown magnitude, if the extension of the bar due to suddenly applied load is 1.5 mm . Also determine the suddenly applied load.
Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
5. A simply supported beam of length 6 m , carries point loads of 3 kN and 6 kN at distances of 2 m and 4 m from left hand. Draw the shear force (SF) and bending moment (BM) diagrams for the beam.
6. A steel plate of width 60 mm and of thickness 10 mm is bent into a circular arc of radius 10 m . Determine the maximum stress induced and the bending moment which will produce the maximum stress.
Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
7. A rectangular column of width 120 mm and of thickness 100 mm carries a point load of 120 kN of an eccentricity of 10 mm . Determine the maximum and minimum stresses at the base of the column.
8. A beam 3 m long, simply supported at its ends, is carrying a point load W at the centre. If the slope at the ends of the beam should not exceed 1°, find the deflection at the centre of the beam.10
9. Prove that the torque transmitted by a solid shaft when subjected to torsion is given by

$$
\mathrm{T}=\frac{\pi}{16} \tau \mathrm{D}^{3}
$$

where $D=$ Diameter of solid shaft, and

$$
\tau=\text { Maximum shear stress. }
$$

10. A thin cylindrical shell of 120 cm diameter, 1.5 cm thick and 6 m long is subjected to internal fluid pressure of $2.5 \mathrm{~N} / \mathrm{mm}^{2}$. If the value of $E=2 \times 10^{6} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio $=0 \cdot 3$, calculate
(a) change in diameter,
(b) change in length, and
(c) change in volume.10
