No. of Printed Pages : 3

BME-017

B.Tech. MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) BTCLEVI / BTMEVI / BTELVI / BTCSVI / BTECVI

Term-End Examination

27200

December, 2018

BME-017 : STRENGTH OF MATERIALS

Time : 3 hours

Maximum Marks: 70

- **Note :** Answer any **seven** questions. All questions carry equal marks. Use of scientific calculator is permitted.
- 1. Draw and describe stress-stain curve for mild steel.
- 2. A steel rod of 3 cm diameter and 5 m long is connected to two grips and the rod is maintained at a temperature of 95°C. Determine the stress and pull exerted when the temperature falls to 30°C, if
 - (i) the ends do not yield, and
 - (ii) the ends yield by 0.12 cm.
 - (Take E = 2×10^5 MN/m², and $\alpha = 12 \times 10^{-6}/^{\circ}$ C.

BME-017

P.T.O.

10

10

- 3. The principal tensile stresses at a point across two perpendicular planes are 100 N/mm² and 50 N/mm². Determine the normal, tangential and resultant stresses on a plane inclined at 30° to the axis of the minor principal stress.
- 4. Calculate instantaneous stress produced in a bar 10 cm^2 in area and 3 m long by the sudden application of a tensile load of unknown magnitude, if the extension of the bar due to suddenly applied load is 1.5 mm. Also determine the suddenly applied load.

Take $E = 2 \times 10^5 \text{ N/mm}^2$.

- 5. A simply supported beam of length 6 m, carries point loads of 3 kN and 6 kN at distances of 2 m and 4 m from left hand. Draw the shear force (SF) and bending moment (BM) diagrams for the beam.
- 6. A steel plate of width 60 mm and of thickness 10 mm is bent into a circular arc of radius 10 m. Determine the maximum stress induced and the bending moment which will produce the maximum stress.

Take E = 2×10^5 N/mm².

7. A rectangular column of width 120 mm and of thickness 100 mm carries a point load of 120 kN of an eccentricity of 10 mm. Determine the maximum and minimum stresses at the base of the column.

10

10

10

10

10

BMF-017

2

- 8. A beam 3 m long, simply supported at its ends, is carrying a point load W at the centre. If the slope at the ends of the beam should not exceed 1°, find the deflection at the centre of the beam.
- **9.** Prove that the torque transmitted by a solid shaft when subjected to torsion is given by

$$T=\frac{\pi}{16} \tau D^3,$$

where D = Diameter of solid shaft, and

 τ = Maximum shear stress.

- 10. A thin cylindrical shell of 120 cm diameter, 1.5 cm thick and 6 m long is subjected to internal fluid pressure of 2.5 N/mm². If the value of $E = 2 \times 10^6$ N/mm² and Poisson's ratio = 0.3, calculate
 - (a) change in diameter,
 - (b) change in length, and
 - (c) change in volume.

BME-017

1,000

10

10

10