B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING
 (BTECVI)

Term-End Examination

an. 36
December, 2018

BIEL-023 : INFORMATION THEORY AND CODING

Time: 3 hours
Maximum Marks : 70

Note: Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is permitted. Any missing data may be suitably assumed.

1. State the Shannon Coding Theorem. Also derive the theorem.
2. A source emits four possible symbols with probabilities of $\frac{1}{8}, \frac{1}{8}, \frac{1}{4}$ and $\frac{1}{2}$ respectively.
(a) Find H (Entropy).
(b) Find information rate if the source emits one symbol/ms.
3. Explain Kraft's inequality and McMillan's inequality. For 2-ary tree with $l_{1}=1 ; l_{2}=2$ and $l_{3}=2$, check whether Kraft's inequality is satisfied or not?
4. A source emits 6 possible symbols with probability of $0.3,0.25,0.2,0.12,0.08,0.05$. Construct the Shannon-Fano coding and also find the coding efficiency.
5. A source emits 6 possible symbols with probabilities of $0.3,0.25,0.2,0.12,0.08,0.05$. Construct the Huffmann coding for the above transmitter. Also find the efficiency.
6. Two binary systems are connected in cascade as shown in Figure 1 below :
(a) Find overall channel matrix and plot corresponding channel diagram.
(b) Find $p\left(z_{1}\right)$ and $p\left(z_{2}\right)$, given that $\mathrm{p}\left(\mathrm{x}_{1}\right)=\mathrm{p}\left(\mathrm{x}_{2}\right)=0.5$.
(c) Find $\mathrm{H}(\mathrm{Y})+\mathrm{H}(\mathrm{Z})$.

Figure 1
BIEL-023
2
7. For a binary symmetric system as shown in Figure 2.
(a) Show that $\mathrm{I}(\mathrm{X} ; \mathrm{Y})=\mathrm{H}(\mathrm{Y})+\mathrm{p} \log _{2} \mathrm{p}+$

$$
(1-p) \log _{2}(1-p)
$$

(b) Find channel capacity

Figure 2
8. (a) For AWGN channel having bandwidth of 4 kHz corresponding S / N is given by 15 dB . Find channel capacity.
(b) For AWGN channel having bandwidth of 4 kHz corresponding two-sided white noise PSD is 10^{-12} watts $/ \mathrm{Hz}$.

Find channel capacity required to get a signal power of 0.1 mwatts at channel output.
9. For a $(6,3)$ Linear Block Codes (LBC), parity check bits are given as :

$$
\begin{aligned}
& \mathrm{c}_{4}=\mathrm{d}_{1} \oplus \mathrm{~d}_{3} \\
& \mathrm{c}_{5}=\mathrm{d}_{1} \oplus \mathrm{~d}_{2} \oplus \mathrm{~d}_{3} \\
& \mathrm{c}_{6}=\mathrm{d}_{1} \oplus \mathrm{~d}_{2}
\end{aligned}
$$

(i) Find Generator matrix.
(ii) Find all possible codewords.
10. For given generator matrix and parity bits matrix :
$5+5$
$G=\left[\begin{array}{llllll}1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0\end{array}\right]_{\mathrm{k} \times \mathrm{n}} \mathrm{P}=\left[\begin{array}{ccc}1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]_{\mathrm{n}-\mathrm{k} \times \mathrm{k}}$
(a) Find parity check matrix (H).
(b) Decode the received codeword (010101) by Syndrome decoding.

