B．Tech．－VIEP－ELECTRONICS AND COMMUNICATION ENGINEERING（BTECVI）

Term－End Examination

December， 2018
ロロロ53

BIEL－007 ：SIGNALS AND SYSTEMS

Time： 3 hours
Maximum Marks ： 70
Note：All questions carry equal marks．Use of scientific calculator is allowed．Attempt any five questions．

1．（a）Check whether the following system is Time Invariant／Time Variant and also Causal／Non causal ：

$$
y(t)=x\left(\frac{t}{3}\right)
$$

（b）Find out whether the following signals are energy or power signals or neither power nor energy．Determine power or energy as the case may be for the signal

$$
\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t})+5 \mathrm{u}(\mathrm{t}-1)-2 \mathrm{u}(\mathrm{t}-2) .
$$

（c）Determine if the signal $x(n)$ given below is periodic．If yes，give its fundamental period．If not，state why it is aperiodic．

$$
x(n)=\sin \left(\frac{6 \pi}{7} n+1\right)
$$

2. (a) Perform convolution to find the response of the system

$$
x(n)=\{1,-1,2,3\}, h(n)=\{1,-2,3,-1\}
$$

(b) For a Causal LTI system the input $x(n)$ and output $y(n)$ are related through a difference equation

$$
y(n)-\frac{1}{6} y(n-1)-\frac{1}{6} y(n-2)=x(n)
$$

Determine the frequency response $H\left(\mathrm{e}^{\mathrm{j} \omega}\right)$ and the impulse response $h(n)$ of the system.
3. (a) Find the Fourier transform of a rectangular pulse with width T and amplitude A .
(b) Determine the unit step response of the LTI system defined by

7

$$
\frac{\partial^{2} y}{\partial t^{2}}+5 \frac{\partial y}{\partial t}+6 y(t)=\frac{\partial x}{\partial t}+x(t)
$$

4. (a) Determine the continuous time Fourier transform of the signal

$$
\mathrm{x}(\mathrm{t})=\mathrm{t} \mathrm{e}^{\mathrm{at}} \mathrm{u}(\mathrm{t})
$$

where $u(t)$ is the unit step function.
(b) If $x(t) \leftrightarrow X(\omega)$, then using time shifting property show that

$$
x(t+T)+x(t-T) \leftrightarrow 2 X(\omega) \cos \omega T
$$

5. (a) A causal system has

$$
\begin{aligned}
& x(n)=\delta(n)+\frac{1}{4} \delta(n-1)-\frac{1}{8} \delta(n-2) \\
& \text { and } y(n)=\delta(n)-\frac{3}{4} \delta(n-1)
\end{aligned}
$$

Find the impulse response and output if

$$
\begin{equation*}
\mathrm{x}(\mathrm{n})=\left(\frac{1}{2}\right)^{\mathrm{n}} \mathrm{u}(\mathrm{n}) \tag{7}
\end{equation*}
$$

(b) List the different properties of Fourier transform. Prove any two of the properties.
6. (a) Determine the Fourier series expansion for a periodic ramp signal with unit amplitude and a period T.
(b) Find the DTFT of

$$
\mathrm{x}(\mathrm{n})=\left(\frac{1}{2}\right)^{\mathrm{n}-1} \mathrm{u}(\mathrm{n}-1)
$$

7. (a) Using suitable Z-transform properties, find $X(Z)$ if

$$
x(n)=(n-2)\left(\frac{1}{3}\right)^{n-2} u(n-2)
$$

(b) Find inverse Z-transform of $X(Z)$ using power series expansion technique :

$$
X(Z)=\frac{Z}{2 Z^{2}-3 Z+1} \quad|Z|>1
$$

