B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)
 Term-End Examination
 December, 2018

BIEL-005 : ANALOG ELECTRONIC CIRCUITS

Time : 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. Any missing data may be suitably assumed and mentioned. Use of scientific calculator is allowed.

1. (a) Draw and explain the circuit diagram of
cascode amplifier.
(b) Derive $A_{i}, A_{v}, R_{i}, R_{o}$ for common emitter configuration using h-parameters.
2. (a) Explain about different distortions in
amplifier.
(b) A power amplifier has ac output of 10 watts at 20% harmonic distortion. Find ac output power due to fundamental frequency.
3. (a) Explain the effects of negative feedback on a system. 5
(b) If a circuit has resonant frequency 40 kHzand it works for 38 kHz to 42 kHz , what isits Quality factor (Q)?5
4. (a) Compare $\mathrm{A}, \mathrm{B}, \mathrm{AB}$ and C amplifiers. 5
(b) What is parallel resonance? 5
5. (a) Draw and explain the circuit diagram of bistable multivibrator. 5
(b) An amplifier has open loop gain of1000 ± 100. It is desired to have an amplifierwhose gain does not vary by more than$\pm 0 \cdot 1 \%$. Calculate
(i) closed loop gain, and
(ii) reverse transmission factor (β). 5
6. (a) Explain the working of tuned oscillator. 5
(b) Explain the working of RC phase shift oscillator using op-amp. 5
7. (a) Discuss the merits and demerits of Darlington compound configuration. 5
(b) Draw and explain 555 Timer. 5
8. (a) Calculate the frequency of oscillation for Hartley oscillator with $L_{1}=L_{2}=1.5 \mathrm{mH}$ and $\mathrm{C}_{3}=0.6 \mu \mathrm{~F}$.
(b) Explain the equivalent circuit of crystal oscillator.
9. (a) Draw and explain the frequency response of BJT and factors affecting its low and high frequency response.
(b) Differentiate between monostable, astable and bistable multivibrators.
10. Write short notes on any two of the following : $2 \times 5=10$
(a) Clapp Oscillators
(b) Push Pull Amplifiers
(c) Variation of Impedance with Frequency
(d) Double Tuned Amplifiers
