B.Tech. Civil (Construction Management)/ B.Tech. Civil (Water Resources Engineering)

Term-End Examination

anr13
December, 2018

ET-302(A) : COMPUTER PROGRAMMING AND NUMERICAL ANALYSIS

Time : 3 hours
Maximum Marks : 70
Note: Attempt any five questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) Solve the following system of linear equations by Gauss elimination method :

$$
\begin{aligned}
& 2 x-6 y+8 z=24 \\
& 5 x+4 y-3 z=2 \\
& 3 x+y+2 z=16
\end{aligned}
$$

(b) Solve the following system of linear equations by Gauss-Seidel iterative method : 7+7

$$
\begin{aligned}
& 5 x+2 y+z=12 \\
& x+4 y+2 z=15 \\
& x+2 y+5 z=20
\end{aligned}
$$

2. (a) Find the real root of the following equation using Regula-Falsi method, correct to three decimal places :

$$
\mathrm{e}^{-\mathrm{x}}=\sin \mathrm{x}
$$

(b) Compute the real root of the following equation by Newton-Raphson method, correct to three decimal places :

$$
x \log _{10} x-1 \cdot 2=0
$$

3. (a) The following table gives corresponding values of x and y. Using Newton's forward interpolation formula, express y as a function of x. Also find y at $x=2 \cdot 5$.

x	0	1	2	3	4
y	3	6	11	18	27

(b) Given the values:

x	0	2	3	6
$f(x)$	-4	2	14	158

Using Lagrange's formula for interpolation, find the value of $f(4)$.
4. (a) The velocity $v(\mathrm{~km} / \mathrm{min})$ of a moped which starts from rest, is given at fixed intervals of time $t(\mathrm{~min})$ as follows :

t	v
0	0
2	10
4	18
6	25
8	29
10	32
12	20
14	11
16	5
18	2
20	0

Estimate approximately the distance covered in 20 minutes.
(b) Find a real root of the following equation using Bisection method, correct to three decimal places :

$$
x^{4}-x-10=0
$$

5. (a) Solve the following system of linear equations by Jacobi iteration method :

$$
\begin{aligned}
& 8 x+y+z=8 \\
& 2 x+4 y+z=4 \\
& x+3 y+5 z=5
\end{aligned}
$$

(b) Using Runge-Kutta method of fourth order, solve for $y(0 \cdot 1)$ and $y(0 \cdot 2)$ given that

$$
\frac{d y}{d x}=x y+y^{2}, \text { and } y(0)=1
$$

6. (a) Draw a flow chart to read 20 numbers and to determine its average value.
(b) What is a file? Explain the various types of files used.
7. (a) Write a FORTRAN program to calculate and print the factorial of an interger.
(b) Write a FORTRAN program that prints the following numbers in decending order : $\quad 7+7$
$\begin{array}{llllllll}1 & 2 & 4 & 8 & 16 & 32 & 64 & 128\end{array}$
8. (a) Two one-dimensional arrays C and D have 50 elements each. Write a FORTRAN program to compute and print the following quantities :

$$
P=\sum_{i=1}^{50} C_{i} D_{i}
$$

(b) Write a FORTRAN program for temperature conversion that gives the option of converting Fahrenheit to Celsius or Celsius to Fahrenheit and depending upon user's choice carries out the conversion.

