No. of Printed Pages : 3

ET-201(A)

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) / B.Tech. (Aerospace Engineering)

Term-End Examination

00903

December, 2018

ET-201(A) : MECHANICS OF FLUIDS

Time : 3 hours

Maximum Marks: 70

Note: Attempt any seven questions. Assume any missing data. Use of non-programmable calculator is permitted.

 (a) What is Centre of Buoyancy ? Discuss the concept of stability of floating bodies in fluid.

5

(b) What would be the fraction of an iceberg above the free surface in the ocean, if the density of ice = 920 kg/m³ and density of sea water = 1030 kg/m³?

ET-201(A)

P.T.O.

5

- 2. (a) Define the following :
 - (i) Density
 - (ii) Cavitation
 - (iii) Surface tension
 - (iv) Water hammer
 - (b) Differentiate between the following :
 - (i) Laminar and Turbulent flows
 - (ii) Steady and Unsteady flows
- **3.** (a) What do you understand by Pathline and Streakline ? Derive equation of continuity.
 - (b) Define the following for a fluid element in motion :
 - (i) Translation
 - (ii) Rotation
 - (iii) Angular deformation
- 4. (a) What is π -theorem ? Write down the significance of the π -theorem.
 - (b) Derive the expression of Euler's number as a function of the Froude and Reynolds numbers.

ET-201(A)

2

5

5

4

7

3

- 5. (a) Write the applications of the following :
 - (i) Energy equation
 - (ii) Linear-momentum equation
 - (b) Derive Euler's equation in streamline coordinates.
- 6. (a) What do you understand by Piezometric Head ? Explain the working of a pitot tube.
 - (b) Derive the expression $Q_a = KH^{5/2}$ for triangular notch.
- 7. Derive the Navier-Stokes equation. Discuss its application. 10
- 8. Explain the following :
 - (a) Velocity variation with time at a given section
 - (b) Boundary layer phenomenon
- **9.** Define the following :
 - (a) Geometric similarity
 - (b) Dynamic similarity
 - (c) Form drag
 - (d) Surge tank
 - (e) Magnus effect

ET-201(A)

1,000

2×5=10

4

6

5

5

3

5×2=10