B.Tech. CIVIL ENGINEERING (BTCLEVI)
 Term-End Examination
 DIGES
 December, 2018

BICE-022 : COMPUTER APPLICATIONS IN CIVIL ENGINEERING

Time : 3 hours
Maximum Marks : 70

Note: Attempt any seven questions. Scientific calculator is allowed. All questions carry equal marks.

1. (a) What do you understand by normalized floating-point for string and representing real numbers?
Represent 44.85×10^{6} in normalized floating-point mode.
(b) Find a root of the equation $x^{3}-x-4=0$ between 1 and 2, to three places of decimal by bisection method.
2. Use Newton-Raphson method to find the root of
the equation $\log _{e} x-\cos x=0$, correct to three
places of decimal. 10
3. Solve the following system of linear equations by LU decomposition method :

$$
\begin{aligned}
& x_{1}+2 x_{2}+3 x_{3}=14 \\
& 2 x_{1}+5 x_{2}+2 x_{3}=18 \\
& 3 x_{1}+x_{2}+5 x_{3}=20
\end{aligned}
$$

4. The population of a town is as follows :

Year	Population: (in Lakhs)
1921	20
1931	24
1941	29
1951	36
1961	46
1971	51

Using Newton's backward interpolation formula, find the increase in population during the period 1955 to 1961.
5. Find the cubic Lagrange's interpolating polynomial from the following data :

$\mathrm{x}:$	0	1	2	5
$\mathrm{f}(\mathrm{x}):$	2	3	12	147

BICE-022 2
6. The table given below reveals the velocity ' v ' of a body during the time ' t ' specified. Find its acceleration at $\mathrm{t}=1 \cdot 1$.

$\mathrm{t}:$	1.0	1.1	1.2	1.3	1.4
$\mathrm{v}:$	43.1	47.7	52.1	56.4	60.8

7. (a) Use Simpson's $\frac{1}{3}$ rule to find $\int_{0}^{1} \frac{d x}{1+x}$ by dividing the interval of integration into 8 equal parts. Hence, find $\log _{\mathrm{e}} 2$ approximately.
(b) Using Simpson's $\frac{3}{8}$ rule, evaluate

$$
\int_{0}^{6} \frac{e^{x}}{1+x} d x
$$

8. (a) Use Euler's method to obtain an approximate value of $y(0.4)$ for the equation $\frac{d y}{d x}=x+y, y(0)=1$, with $h=0 \cdot 1$.
(b) Use Runge-Kutta method of fourth order to approximate y when $x=0 \cdot 1$, given that $y=1$ at $x=0$ and $\frac{d y}{d x}=3 x+y^{2}$, with $\mathrm{h}=0 \cdot 1$.
9. Discuss the following : $4 \times 2 \frac{1}{2}=10$
(a) Statement of an optimization problem
(b) One-dimensional minimization methods
(c) Unimodal Functions
(d) Fibonacci Numbers
10. Discuss the salient features of Golden Section Method and Fibonacci Method. 10
