No. of Printed Pages: 5

BICE-007

B.Tech. – VIEP – Computer Science & Engg. (BTCSVI) / B.Tech. Electronics and Communication Engg. (BTECVI) / B.Tech. Electrical Engg. (BTELVI)

Term-End Examination

December, 2018

BICE-007 : MATHEMATICS-III

Time : 3 hours

70063

Maximum Marks : 70

- Note: All questions are compulsory. Use of scientific calculator is permitted. Attempt any two parts from each question. All questions carry equal marks.
- **1.** Attempt any *two* of the following : $2 \times 7 = 14$
 - (a) Find an analytic function whose imaginary part is $e^{-x}(x \cos y + y \sin y)$.
 - (b) Verify Cauchy's integral theorem for $f(z) = z^2$ taken over the boundary of a square with vertices at ± 1 , $\pm i$ in counter-clockwise direction.

BICE-007

P.T.O.

(c) Use Cauchy's integral formula to evaluate $\int_{C} \frac{z}{z^2 - 3z + 2} dz, \text{ where } C \text{ is the circle}$ $|z - 2| = \frac{1}{2}.$

2. Attempt any *two* of the following :

- 2×7=14
- (a) The first four moments of a distribution about x = 2 are 1, 2.5, 5.5, and 16. Calculate the first four moments about the mean and about origin.
 - (b) Use the method of least squares to fit the curve

 $y = \frac{C_0}{x} + C_1 \sqrt{x}$ to the following table

of values :

x	у
0.1	21
0.2	11
0.4	7
0.2	6
1	5
2	6

BICE-007

2

(c) Calculate the coefficient of correlation for the following data :

Husband's age (in yrs) x	Wife's age (in yrs) y		
23	18		
27	20		
28	22		
28	27		
29	21		
30	29		
31	27		
33	29		
35	28		
36	29		

3. Attempt any *two* of the following :

2×7=14

- (a) Out of 800 families with 4 children each, how many families would be expected to have
 - (i) 2 boys and 2 girls, and
 - (ii) at least one boy.
- (b) Six coins are tossed 6400 times. Using the Poisson distribution, determine the approximate probability of getting six heads x times.

BICE-007

P.T.O.

- (c) In a sample of 1000 cases, the mean of a certain test is 14 and standard deviation is 2.5. Assuming the distribution to be normal, find
 - (i) How many students score between 12 and 15?
 - (ii) How many students score above 18?
 - (iii) How many students score below 8?
- 4. Attempt any *two* of the following :

2×7=14

- (a) Using Newton's iterative method, find the real root of $x \log_{10} x = 1.2$, correct to six decimal places.
 - (b) From the following table, estimate the number of students who obtained marks between 40 and 45:

Marks	30 – 40	40 – 50	50 – 60	60 – 70	70 – 80
No. of students	31	42	51	35	31

 (c) By means of Newton's divided difference formula, find the values of f(8) and f(15) from the following table :

x	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

BICE-007

4

5. Attempt any *two* of the following :

(a) Solve the following system of equations by Crout's method :

> x + y + z = 32x - y + 3z = 163x + y - z = -3

(b) A rod is rotating in a plane. The following table gives the angle θ (in radians) through which the rod has turned for various values of time t (in seconds) :

t	0	0.2	0.4	0.6	0.8	1.0	1.2
θ	0	0.12	0·49	1.12	2.02	3.20	4 ·67

Calculate the angular velocity and angular acceleration of the rod at t = 0.6 sec.

(c) Use the Runge-Kutta fourth order method to find the value of y when x = 1. Given that y = 1 when x = 0 (taking n = 2) and $\frac{dy}{dx} = \frac{y - x}{y + x}$.

BICE-007