B.Tech. (AEROSPACE ENGINEERING) (BTAE)

Term-End Examination
Dロ433 December, 2018

BAS-020 : BASIC CONTROL THEORY

Time: 3 hours

Maximum Marks : 70
Note: Attempt any five questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) Determine the stability of the system whose characteristic equation is given by

$$
2 \lambda^{3}+4 \lambda^{2}+4 \lambda+12=0 .
$$

(b) Differentiate between the following : $2 \times 4=8$
(i) Classical and Modern Control theories
(ii) Stable and Unstable systems
2. (a) Given the $4^{\text {th }}$ order characteristic equation

$$
\lambda^{4}+6 \lambda^{3}+11 \lambda^{2}+6 \lambda+\mathrm{k}=0 .
$$

For what value of k will the system be stable?
(b) Describe in brief the PID Controller. 6
3. Given the loop transfer function

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{\mathrm{k}}{\mathrm{~s}(\mathrm{~s}+3)(\mathrm{s}+10)} .
$$

(a) Sketch root locus plot for $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$.
(b) Add a simple pole, $(\mathrm{s}+2)$, to $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ and examine the resultant root locus.
(c) Add a simple zero, $(\mathrm{s}+2)$, to $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ and examine the resultant root locus.
4. Define the following :
(a) Transfer function
(b) Poles and zeroes
(c) Routh's criterion
(d) Root locus plot
(e) Compensator
(f) Gain and Phase margin
(g) Closed loop system
5. Write short notes on any two of the following : $2 \times 7=14$
(a) Stability Augmentation
(b) Synchros
(c) Autopilot
(d) Sensors
6. (a) The single degree of freedom pitching motion of an airplane was shown to be represented by a second-order differential equation. The equation is given as

$$
\ddot{\theta}+0.5 \dot{\theta}+2 \theta=\delta_{\mathrm{e}}
$$

where θ and δ_{e} are in radians.
Estimate the time rise, peak overshoot and settling time for step input of the elevator angle of 0.1 rad.
(b) Define peak overshoot and settling time.
7. (a) Write a note on 'Computer Electronic Design Aspects'.
(b) Explain forward path compensation with the help of an example. 4
(c) Explain 'Roll Altitude Autopilot' with the help of an example.

