No. of Printed Pages : 3

BAS-017

B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination

10473

December, 2018

BAS-017 : FLIGHT MECHANICS

Time : 3 hours

Maximum Marks : 70

Note: Attempt seven questions in all. Question no. 1 is compulsory. Attempt any six questions from the remaining questions. Use of scientific calculator is permitted. Use given data for solving numerical problems.

Data for questions no. 2, 3, 4, 5 and 6.

Horizontal Tail Data Fuselage Data Wing Data $C_{L_{0w}} = 0.21$ $C_{L_{\alpha_t}} = 4.5 \text{ per rad } C_{m_{0_f}} = -0.01$ $C_{L\alpha_{trr}} = 5.5 \text{ per rad}$ $S_t = 5 \text{ m}^2$ $C_{m_{\alpha_f}} = 0.1 \text{ per rad}$ $C_{m_{ac_w}} = -0.10$ $l_{+} = 5.5 \text{ m}$ $\tau = 0.5$ $b_{w} = 15 m$ $\eta_{t} = 0.9$ $C_{L_{trim}} = 0.3$ $\overline{C}_{--} = 1.75 \text{ m}$ $i_{+} = -1.5 \text{ deg}$ $C_{h_{\alpha_{+}}} = -0.015 \text{ per rad}$ $\lambda_{w} = Taper ratio = 1$ $C_{h_{\delta_e}} = -0.025 \text{ per rad}$ $X_{ac} = 0.25 \overline{C}_{u}$ $C_{L_{\delta_{\alpha}}} = 0.25 \text{ per rad}$ $X_{cor} = 0.30 \overline{C}_{ur}$ $i_{m} = 1.5 \text{ deg}$ e = Oswald's efficiency = 0.9**BAS-017** P.T.O

- 1. Distinguish between the following using sketches: 4+3+3
 - (a) Static stability and Dynamic stability
 - (b) Floating and Restoring characteristics
 - (c) Primary and Secondary control surfaces
- 2. Calculate (i) pitching moment coefficient at zero lift (C_{m_0}), and (ii) pitching moment curve slope ($C_{m_{\alpha}}$) for complete aircraft for stick-fixed case using given data. 5+5
- 3. Calculate (i) pitching moment coefficient at zero lift (C'_{m_0}) , and (ii) pitching moment curve slope $(C'_{m_{\alpha}})$ for complete aircraft for stick-free case using given data. 5+5
- Define neutral point. Calculate neutral points for stick-fixed and stick-free cases using given data. 2+4+4
- Define elevator control power. Derive expression for elevator control power and calculate its value using given data.
- 6. Define the elevator angle to trim and calculate its value using given data. 2+4+4

2

Take $C_{L_{\alpha_w}} \cong C_{L_{\alpha}}$.

BAS-017

- 7. Explain the following using sketches (if required): 3+3+2+2
 (a) Dihedral effect
 - (b) Weathercock stability
 - (c) Adverse yaw
 - (d) Trim tab
- 8. Write notes on the following :
 - (a) In-flight measurement of stick-fixed maneuver point
 - (b) Methods of aerodynamic balancing
- **9.** (a) Discuss the cross-coupling of lateral and directional effects.
 - (b) Define rudder power. Explain the uses of a rudder. 2+3
- 10. Write short notes on any *two* of the following: 5×2
 - (a) Power Effects
 - (b) Aerodynamics Balancing
 - (c) Phugoid

BAS-017

3

5 + 5

5