B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination
December, 2018

BAS-009 : INTRODUCTION TO AERONAUTICS

Time : 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) Explain the salient features of various atmospheric layers.

4
(b) Define geopotential altitude. Calculate pressure, density and temperature at an altitude of 19 km using ISA conditions. Assume lapse rate of $-6.5 \mathrm{~K} / \mathrm{km}$ for troposphere.

$$
1+2+2+1=6
$$

2. (a) Show primary and secondary control surfaces of a medium transport aircraft with the help of top view and side view.
(b) Explain the functioning of primary and secondary control surfaces.
3. (a) Discuss the development of Aeronautical Science in America and Europe. List aerospace applications. $4+2=6$
(b) Write a note on V/STOL machines.
4. (a) Explain the nomenclature of NACA 4-digit, 5-digit and 6-digit series airfoils. How is 6-digit series different from other NACA series? $6+2=8$
(b) Explain the characteristics of supercritical airfoils with the help of sketch.
5. Describe the following with the help of sketches: $4+4+2=10$
(a) Drag polar for symmetrical and cambered airfoils
(b) High-lift devices
(c) Area Rule
6. (a) Explain flight envelope for a military aircraft with the help of neat and labelled sketch. How is gust envelope different from flight envelope?
(b) Explain the compressibility effects on aerodynamic coefficients.
7. Describe the hodograph diagram for climb and glide performance with the help of neat and labelled diagrams. Explain various terms used in hodographs.
$6+4=10$
8. (a) Define range and endurance. Explain the conditions for maximum range and endurance for a propeller type aircraft. $2+2=4$
(b) Calculate the maximum range and endurance for a (turbojet) aircraft using the following data :

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{D}}=0.015+0.08 \mathrm{C}_{\mathrm{L}}^{2} \\
& \rho= \text { Density }= \\
&= 0.41 \mathrm{~kg} / \mathrm{m}^{3} \\
& \mathrm{~W}_{\mathrm{o}}=\text { Weight }= 2,00,000 \mathrm{~N} \\
& \text { (Total take-off weight) }
\end{aligned}
$$

$S=$ Planform area $=100 \mathrm{~m}^{2}$
$\mathrm{W}_{\mathrm{f}}($ Fuel weight $)=60,000 \mathrm{~N}$
C_{t} (Thrust sp. fuel consumption)
$=0.07 \mathrm{~kg}$ of fuel $/ \mathrm{hr} /$ Newton of thrust
9. (a) Derive the expression for total landing distance (approach distance + flare distance + ground roll distance). 6
(b) Distinguish between Fixed pitch propeller and Constant speed propeller.

