No. of Printed Pages: 4

BAS-001

B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination

BAS-001 : APPLIED PHYSICS

Time : 3 hours

Maximum Marks: 70

Note: Question no. 1 is compulsory. Attempt any five questions from questions no. 2 to 9. Assume missing data if any. Use of scientific calculator is permitted.

1. (a)	A particle executes SHM of a period of	
	31.4 sec and amplitude 5 cm. Calculate	
	maximum velocity and maximum	
	acceleration.	\mathcal{B}
(b)	Define Simple Harmonic Motion.	3
(c)	Define Relaxation time and Quality factor of	
	a damped harmonic oscillator.	3
(d)	Calculate the frequency of the radio waves	
	transmitted by a station if the wavelength of	
	the wave is 300 m and also calculate its time $% \left({{{\left[{{{{\rm{T}}_{\rm{T}}}} \right]}_{\rm{T}}}} \right)$	
	period.	\mathcal{B}
(e)	Define Interference.	3
BAS-001	1 P.	Т.О.

(f) Define Heisenberg Uncertainty Principle and Pauli's Exclusion Principle.

3

3

3

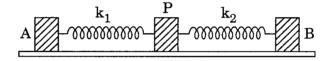
3

3

3

 \mathcal{B}

3


3

3

- (g) In a Newton's ring experiment, Newton's rings are observed in reflected light of $\lambda = 5.9 \times 10^{-5}$ cm. The diameter of the 10^{th} dark fringe is 0.5 cm. Find the radius of curvature of lens and thickness of air film.
- (h) Define Superposition of waves.
- (i) Define Spontaneous emission and Induced absorption.
- (j) Green light of wavelength 5100 Å from a narrow slit is incident on a double slit. If the overall separation of 10 fringes on a screen 200 cm away is 2 cm, find the slit separation.
- (k) Write any three limitations of Bohr's atomic model.
- The wavelength of the second line of the Balmer Series in the hydrogen spectrum is 4861 Å. Calculate the wavelength of the first line.
- (m) Define frame of reference and name the two types of reference frames.
- (n) If 1 kg of a substance is fully converted into energy, how much energy is produced ?
- (o) At what speed is a particle moving, if the mass is equal to two times the rest mass ?

BAS-001

- 2. Figure 1 shows a body 'P' resting on a smooth table between two firm supports A, B and controlled by two massless springs. If mass of P is 0.050 kg and the force constant of the two springs are 3 N/m and 2 N/m, deduce
 - (i) The frequency of small oscillations of 'P',
 - (ii) The energy of oscillation for amplitude 0.004 m,
 - (iii) The velocity of body 'P' when it passes through its mean position.

3. For a wave equation $y = a \sin (\omega t - kx)$, prove that $\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$.

- 4. Deduce the formula for relativistic variation of mass with velocity. Briefly explain its significance.
- 5. Explain the working of He-Ne laser with a neat diagram.

BAS-001

P.T.O.

5

5

5

- 6. (a) Light of wavelength 5500 Å from a narrow slit is incident on a double slit. The overall separation of 5 fringes on a screen 200 cm away is 1 cm. Calculate (i) slit separation, and (ii) the fringe width.
 - (b) On placing a thin sheet of mica of thickness 12×10^{-5} cm in the path of the interfering beam in a biprism arrangement, it is found that the central bright band is shifted to a distance equal to the width of a bright fringe. Calculate the refractive index of mica. ($\lambda = 6 \times 10^{-5}$ cm)
 - 7. Derive Schrodinger's time dependent equation.
 - 8. What is pile of plates ? Indicate how it can be used to obtain plane polarized light.
 - **9.** Using the physical constants given below, calculate the following for a hydrogen atom :
 - (a) Velocity of an electron in ground state
 - (b) Radius of Bohr's orbit in ground state

(c) Rydberg constant

$$e = 1.6 \times 10^{-19}$$
 coulomb; $M = 9.1 \times 10^{-31}$ kg
 $h = 6.6 \times 10^{-34}$ J-s; $c = 3 \times 10^8$ m/s.
 $\epsilon_0 = 8.86 \times 10^{-12}$ C²/N-m²

BAS-001

4

 \mathcal{B}

2

5

5

5