## B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination<br>Mriniz3

December, 2018

## BAS-001 : APPLIED PHYSICS

Time : 3 hours
Maximum Marks : 70
Note: Question no. 1 is compulsory. Attempt any five questions from questions no. 2 to 9. Assume missing data if any. Use of scientific calculator is permitted.

1. (a) A particle executes SHM of a period of $31 \cdot 4 \mathrm{sec}$ and amplitude 5 cm . Calculate maximum velocity and maximum acceleration. 3
(b) Define Simple Harmonic Motion. 3
(c) Define Relaxation time and Quality factor of a damped harmonic oscillator.
(d) Calculate the frequency of the radio waves transmitted by a station if the wavelength of the wave is 300 m and also calculate its time period.
(e) Define Interference. 3
(f) Define Heisenberg Uncertainty Principle and Pauli's Exclusion Principle.
(g) In a Newton's ring experiment, Newton's rings are observed in reflected light of $\lambda=5.9 \times 10^{-5} \mathrm{~cm}$. The diameter of the $10^{\text {th }}$ dark fringe is 0.5 cm . Find the radius of curvature of lens and thickness of air film.
(h) Define Superposition of waves.
(i) Define Spontaneous emission and Induced absorption.
(j) Green light of wavelength $5100 \AA$ from a narrow slit is incident on a double slit. If the overall separation of 10 fringes on a screen 200 cm away is 2 cm , find the slit separation.
(k) Write any three limitations of Bohr's atomic model.
(1) The wavelength of the second line of the Balmer Series in the hydrogen spectrum is $4861 \AA$. Calculate the wavelength of the first line.
(m) Define frame of reference and name the two types of reference frames.
(n) If 1 kg of a substance is fully converted into energy, how much energy is produced ?
(o) At what speed is a particle moving, if the mass is equal to two times the rest mass?
2. Figure 1 shows a body ' $P$ ' resting on a smooth table between two firm supports A, B and controlled by two massless springs. If mass of P is 0.050 kg and the force constant of the two springs are $3 \mathrm{~N} / \mathrm{m}$ and $2 \mathrm{~N} / \mathrm{m}$, deduce
(i) The frequency of small oscillations of ' P ',
(ii) The energy of oscillation for amplitude 0.004 m ,
(iii) The velocity of body ' $P$ ' when it passes through its mean position.


Figure 1
3. For a wave equation $\mathrm{y}=\mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx})$, prove that $\frac{\partial^{2} y}{\partial \mathrm{x}^{2}}=\frac{1}{\mathrm{v}^{2}} \frac{\partial^{2} \mathrm{y}}{\partial \mathrm{t}^{2}}$.
4. Deduce the formula for relativistic variation of mass with velocity. Briefly explain its significance.
5. Explain the working of $\mathrm{He}-\mathrm{Ne}$ laser with a neat diagram.
6. (a) Light of wavelength $5500 \AA$ from a narrow slit is incident on a double slit. The overall separation of 5 fringes on a screen 200 cm away is 1 cm . Calculate (i) slit separation, and (ii) the fringe width.
(b) On placing a thin sheet of mica of thickness $12 \times 10^{-5} \mathrm{~cm}$ in the path of the interfering beam in a biprism arrangement, it is found that the central bright band is shifted to a distance equal to the width of a bright fringe. Calculate the refractive index of mica. $\left(\lambda=6 \times 10^{-5} \mathrm{~cm}\right)$
7. Derive Schrodinger's time dependent equation.
8. What is pile of plates ? Indicate how it can be used to obtain plane polarized light.
9. Using the physical constants given below, calculate the following for a hydrogen atom :
(a) Velocity of an electron in ground state
(b) Radius of Bohr's orbit in ground state
(c) Rydberg constant

$$
\begin{aligned}
& \mathrm{e}=1.6 \times 10^{-19} \text { coulomb; } \mathrm{M}=9.1 \times 10^{-31} \mathrm{~kg} \\
& \mathrm{~h}=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s} ; c=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \varepsilon_{0}=8.86 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N}-\mathrm{m}^{2}
\end{aligned}
$$

