MCA (Revised)
 Term-End Examination
 December, 2018
 04363

 MCS-031 : DESIGN AND ANALYSIS OF

 MCS-031 : DESIGN AND ANALYSIS OF ALGORITHMS

 ALGORITHMS}

Time: 3 hours
Maximum Marks : 100
Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Differentiate between P and NP class of problems with example of each.
(b) Write an algorithm that finds the real roots, if any, of a quadratic equation $a x^{2}+b x+c=0$, where $a \neq 0, b$ and c are real numbers.
(c) By using Principle of Mathematical Induction, show that $\mathrm{n}^{3}-\mathrm{n}$, is divisible by 6 , where n is a non-negative integer.
(d) Sort the following sequence of numbers using Bubble sort :

$$
15,10,13,9,12,17 .
$$

Find the total number of comparisons required by the algorithm in sorting the list.
(e) Explain the "Principle of Optimality" in dynamic programming with suitable example.
(f) Compute x^{29} by using divide and conquer technique.
(g) Define Regular Expression. Find the Regular Expression for the following Finite Automata :

2. (a) Apply Dynamic programming to multiply the following chain of matrices:
$\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}$ and M_{4} with respective dimensions $(5 \times 10),(10 \times 3),(3 \times 7),(7 \times 15) .10$
(b) Differentiate between Kruskal's and Prim's algorithms. Apply Prim's algorithm to find the minimum spanning tree for the following graph :

3. (a) Write Euclid's algorithm to find the GCD of two natural numbers m and n.
(b) Write Merge Sort Algorithm. Apply the same to sort the array of elements

$$
\begin{equation*}
15,10,5,9,7,20,25,18,16 \tag{10}
\end{equation*}
$$

(c) Show that the context-free grammar $S \rightarrow S+S|S * S| a \quad$ is ambiguous.
4. (a) Define Θ-Notation. Show that
(i) $3 x^{2}+2 x+1=\Theta\left(x^{2}\right)$
(ii) $2 x^{3}+x+5 \neq \Theta\left(x^{4}\right)$
(b) Write Dijkstra's Algorithm. Using Dijkstra's Algorithm, find the minimum distances of all the nodes from starting node a.

5. (a) Write short notes on any three of the following : $3 \times 5=15$
(i) Kleene Closure
(ii) Push-down Automata (PDA)
(iii) Chomsky's Classification of Grammar
(iv) Amortize Analysis
(b) Find context-free grammar for the following : 5
(i) $L=\left\{a^{m} b^{n} \mid m, n \in N, n>m\right\}$
(ii) $L=\left\{a^{m} b c^{n} \mid n \in N\right\}$

