MCA (Revised) / BCA (Revised)

Term-End Examination

December, 2018

MCS-013(S): DISCRETE MATHEMATICS

Time: 2 hours Maximum Marks: 50 Note: Question number 1 is compulsory. Attempt any three questions from the rest. 1. Find the dual of (a) $A \cap (B \cap C) = (A \cap B) \cap C$ and (i) $(A \cup B) \cap (A \cup C)$. (ii) 4 (b) Give the geometric representation of $R \times \{2\}$. R is the set of Real Numbers. 4 (c) Find the number of distinct sets of 5 cards that can be dealt from a deck of 52 cards. 4 (d) Find the number of ways of placing n people in (n-1) rooms, no room being empty. 4 (e) Verify that $p \wedge q \wedge (\sim p)$ is a contradiction and $p \rightarrow q \leftrightarrow \sim p \vee q$ is a tautology. 4 MCS-013(S) P.T.O.

2. (a) Prove that if $x, y \in I$ such that xy is odd, then both x and y are odd, by proving its contrapositive. I is the set of Integers.

5

(b) Design a logic circuit to operate a light bulb by two switches x_1 and x_2 .

5

3. (a) A box contains 3 red, 3 blue and 4 white socks. In how many ways can 8 socks be pulled out of the box, one at a time, if order is important?

5

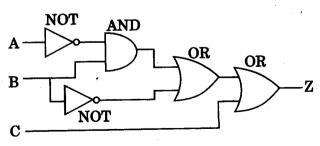
(b) Suppose 5 points are chosen at random within or on the boundary of an equilateral triangle of side 1 metre.

5

Show how we can find two points at a distance of at most $\frac{1}{2}$ metre.

4. (a) Find the boolean expression for the following circuit:

4



(b)	Find the inverse of the following function:			3
	$f(\mathbf{x}) = \mathbf{x}^3 - 3$			

- (c) State and explain Pigenhole principle. 3
- 5. (a) A car manufacturer has 5 service centres in a city. 10 identical cars were served in these centres for a particular mechanical defect. In how many ways could the cars have been distributed at the various centres?
 - (b) Show that $\sqrt{5}$ is irrational.