No. of Printed Pages : 5

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination

00763

December, 2018

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 hours

Maximum Marks: 75

CS-71

Note: Question number 1 is compulsory. Attempt any three questions from questions number 2 to 5. Use of scientific calculator is permitted.

1.	(a)	(i)	Round off the following numbers to two decimal places : 2+3 48:21416 52:276 2:270 and 81:255		
	(ii)		Using 8-decimal digit floating point representation (with four digits for mantissa, two for exponent and one		
•			each for sign of exponent and mantissa), represent the following numbers in normalized floating point		

8976; - 897.892; - 0.0019276

form (use chopping, if required):

CS-71

1

P.T.O.

(b)

- (i) For two floating point numbers $x_1 = 0.5306 \times 10^3$ and $x_2 = 0.6187 \times 10^4$, find $x_1 - x_2$ in floating point representation. 2+3
- (ii) Find the product of the two numbers given in question number b(i) above.
- (c) (i) Write the following system of linear equations in matrix form : 2+3

$$9x - 11y = -19$$

$$-2x - 13y = -21$$

(ii) Find an interval in which the following equation has a root :

5

5

5

$$\mathbf{x}^3 - \mathbf{x}^2 - 1 = 0$$

$$\mu^2=1+\frac{1}{4}\,\delta^2\,.$$

(e) Using Newton's forward interpolation formula, find y at x = 8, from the following table:

x	0	5	10	15	20	25
у	7	11	14	18	24	32

(f) Find a real root of the equation

$$x^3 - x - 11 = 0$$

correct to three decimal places using Bisection method.

CS-71

2

2. (a)

(a) Using Lagrange's interpolation formula, find the values of y when x = 10, from the following data : $3 \times 5 = 15$

x	5	6	9	11
у	12	13	14	16

(b) Evaluate :

$$\int_{0}^{1} \frac{1}{1+x^2} dx$$

using Simpson's $\frac{1}{3}$ rule taking $h = \frac{1}{4}$.

(c) Find a real root of the equation

 $\mathbf{x}^3 - \mathbf{x} - \mathbf{1} = \mathbf{0}$

correct to two decimal places by iterative method.

3.

(a)

Find a real root of the equation $x^3 - 3x^2 + 7x - 8 = 0$

correct to three decimal places using

Newton-Raphson's method. $3 \times 5 = 15$

(b) Find a root of the equation $x^3 - 4x - 9 = 0$

correct to three decimal places using Regula–Falsi method.

CS-71

P.T.O.

(c) Solve the following system of linear equations by Cramer's rule :

$$3x + 4y - z = 8$$
$$-2x + y + z = 3$$
$$x + 2y - z = 2$$

4. (a) Solve the following system of linear equations by Gauss elimination method : $3 \times 5 = 15$

$$2x + y + 4z = 12$$

 $8x - 3y + 2z = 20$

4x + 11y - z = 33

(b) Solve the following system of linear equations by Gauss-Seidel iterative method:

2x + y + z = 4x + 2y + z = 4x + y + 2z = 4

(c) Use Jacobi's iteration method to solve the following system of equations :

20x + y - 2z = 173x + 20y - z = -182x - 3y + 20z = 25

CS-71

- 5. (a) If 0.333 is the approximate value of $\frac{1}{3}$, find absolute, relative, and percentage errors. $3\times 5=15$
 - (b) Use Runge-Kutta method to find y whenx = 1.1 in steps of 0.1, given that

$$\frac{dy}{dx} = x^2 + y^2$$
 and $y(1) = 1.5$.

(c) Using Euler's method, compute y for x = 0.1and 0.2 choosing h = 0.1 from

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y - \frac{2x}{y}, \ y(0) = 1.$$