BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination
 December, 2018

Dロ3E3

CS-60 : FOUNDATION COURSE IN MATHEMATICS IN COMPUTING

Time: 3 hours
Maximum Marks : 75
Note: Question no. 1 is compulsory. Attempt any three questions from questions no. 2 to 6. Use of calculator is permitted.

1. (a) It is given that, $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$, $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$ and $z=z_{1} z_{2}$. Prove that $|z|=r_{1} r_{2}$.
(b) Evaluate

$$
\int \cot x d x
$$

(c) For $\mathrm{a}, \mathrm{b}, \mathrm{c}$ being real, prove that

$$
(a+b+c)^{3} \geq 27 a b c
$$

(d) Solve graphically

$$
\begin{aligned}
& 2 x+5 y=9 \\
& x-y=1
\end{aligned}
$$

(e) Find $\frac{d y}{d x}$ in terms of x, when, $x=c t, y=\frac{c}{t}$.
(f) Find the equation of the straight line passing through the origin and parallel to $2 x+3 y=4$.
(g) Find the equation of the circle, the extremities of a diameter of which are $(1,1)$ and $(2,3)$.
(h) Find the equation of the parabola whose focus is at ($a, 0$) and the directrix is $\mathbf{x}+\mathbf{a}=0$.
(i) Find the eccentricity of the ellipse :

$$
9 x^{2}+16 y^{2}=25
$$

(j) Evaluate:

$$
\int_{0}^{\pi} \sin ^{2} x d x
$$

(k) Evaluate :

$$
\operatorname{Lt}_{x \rightarrow 0} \frac{\sin 3 x}{\tan 2 x}
$$

(1) Show that, $f(x)=\sin ^{2} x$ is a periodic function.
(m) Define the following in roster form :

$$
\begin{aligned}
& A=\{1,4,9,16,25,36,49,64,81\} \\
& B=\{1,8,27,64\}
\end{aligned}
$$

(n) Transform to polar equation

$$
x^{2}-y^{2}=2 a y
$$

(o) Find the direction cosines of a line which makes equal angles with the co-ordinate axes.

$$
15 \times 3=45
$$

2. (a) Solve using Cramer's Rule

$$
x+2 y=3, \quad 2 x+y=3
$$

(b) Form the quadratic equation whose product and sum of roots are 6 and 5 respectively.
(c) Find the square root of 'i'.
3. (a) If $x y=36$, find the least value of $(x+y)$.
(b) Find the equation of the straight line parallel to $3 x+4 y+5=0$ and passing through the point $(-2,-3)$.
(c) If the extremities of the focal chord of the parabola, $\mathrm{y}^{2}=4 \mathrm{ax}$ are $\left(\mathrm{at}_{1}^{2}, 2 \mathrm{at}_{1}\right)$ and $\left(a t_{2}^{2}, 2 a t_{2}\right)$, prove that $t_{1} t_{2}=-1$.
4. (a) Find the equation of the tangent to the ellipse,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \text { at }\left(x_{1}, y_{1}\right)
$$

(b) Prove that the equation,

$$
x^{2}+6 x y+9 y^{2}+4 x+12 y-5=0
$$

represents a pair of parallel straight lines and find the distance between them.
5. (a) Show that the two circles,

$$
\begin{aligned}
& \qquad x^{2}+y^{2}+2 x-14 y+1=0 \\
& \text { and } x^{2}+y^{2}-8 x+10 y+5=0 \\
& \text { touch each other externally. }
\end{aligned}
$$

(b) Evaluate

$$
\int_{0}^{1} x^{2} d x
$$

(c) Find $\frac{d y}{d x}$,
when

$$
y=\tan ^{-1}\left(\frac{\cos x+\sin x}{\cos x-\sin x}\right)
$$

6. (a) Show that the triangle formed by the points $(-1,-3,4) ;(-2,1,-4)$ and $(3,-11,5)$ is isosceles.
(b) Show that the distance of the origin from the plane,

$$
6 x-3 y+2 z-14=0 \text { is } 2 \text { units. }
$$

(c) Find the centre and the radius of the sphere,

$$
3 x^{2}+3 y^{2}+3 z^{2}+2 x-4 y-2 z-1=0
$$

