BACHELOR OF COMPUTER APPLICATIONS （BCA）（Revised）

Term－End Examination
ロロロG3

December， 2018

BCS－042 ：INTRODUCTION TO ALGORITHM DESIGN

Time： 2 hours
Maximum Marks ： 50

Note：Question no． 1 is compulsory and carries 20 marks．Answer any three questions from the rest．

1．（a）Define Ω（Big＇Omega＇）notation．By using basic definition of Ω show that

$$
\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n})),
$$

where $f(n)=2 n^{3}+3 n^{2}+1$ ，and

$$
g(n)=2 n^{2}+3
$$

（b）What is an algorithm ？Explain the meaning of time complexity and space complexity of an algorithm．
(c) Arrange the following functions in increasing order of growth

$$
\begin{equation*}
\mathrm{n}^{3}, 2 \mathrm{n}^{2}+3,5 \mathrm{n}+2,5^{\mathrm{n}}, 2^{\mathrm{n}} \tag{3}
\end{equation*}
$$

(d) Define the following terms:
(i) Spanning tree
(ii) Adjacency matrix
(e) Find the time complexity of the following loop :
for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$)
\{

$$
i=i * 2 ;
$$

)
2. (a) Write algorithm to multiply two square matrices of order $n \times n$ and find its time complexity.
(b) Using Insertion sort, sort the following list and show all the intermediate steps :

$$
\begin{array}{lllllll}
8 & 6 & 4 & 15 & 9 & 25 & 2
\end{array}
$$

3. (a) Find the optimal solution to the knapsack instance $n=5$, capacity $M=15$,

$$
\begin{aligned}
& \left(p_{1}, p_{2}, \ldots, p_{5}\right)=(15,35,48,30,40) \\
& \left(w_{1}, w_{2}, \ldots, w_{5}\right)=(4,8,5,6,2)
\end{aligned}
$$

(b) Prove that

$$
\mathrm{P}(\mathrm{n}): 1^{2}+2^{2}+\ldots \mathrm{n}^{2}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}, \text { by }
$$

using mathematical induction.
4. (a) Write pseudo code for Breadth-First Search (BFS). Traverse the following graph using BFS, the starting node is A .

(b) Solve the following recurrence relation using recursion tree method :

$$
T(n)=4 T\left(\frac{n}{2}\right)+n
$$

5. (a) Write Kruskal's Algorithm to find Minimum Cost Spanning Tree (MCST) of the following graph :

(b) Write an algorithm to search an element (say x) using Binary Search. Analyze its time complexity in worst case.
