No. of Printed Pages: 4

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination

10603

December, 2018

BCS-012 : BASIC MATHEMATICS

Time: 3 hours

Maximum Marks: 100

1)'

5

BCS-012

Note: Question number 1 is compulsory. Attempt any three questions from the remaining questions.

1. Attempt all parts :

(a) Show that

		b – c	c-a	a – b		
		c – a	a – b	$\mathbf{b}-\mathbf{c}=0$.		
		a – b	$\mathbf{b} - \mathbf{c}$	c – a		5
(b)	If	$\mathbf{A} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} -2\\ 1 \end{pmatrix}$,	and $I_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	0 1),	

find $(A - I_2)^2$.

Show that 7 divides $2^{3n} - 1 \forall n \in \mathbb{N}$. (c) 5 **BCS-012** P.T.O. 1

 (d) If 7 times the 7th term of an A.P. is equal to 11 times the 11th term of the A.P., find its 18th term.

(e) If 1,
$$\omega$$
, ω^2 are the cube roots of unity, find
 $(2 + \omega + \omega^2)^6 + (3 + \omega + \omega^2)^6$. 5

(f) If
$$\alpha$$
, β are roots of $x^2 - 2kx + k^2 - 1 = 0$, and
 $\alpha^2 + \beta^2 = 10$, find k.

(g) If
$$y = (x + \sqrt{x^2 + 1})^3$$
, find $\frac{dy}{dx}$.

$$\int x \sqrt{3-2x} \, dx$$

2. (a) If
$$A = \begin{bmatrix} -1 & 2 & 3 \\ 4 & 5 & 7 \\ 5 & 3 & 4 \end{bmatrix}$$
, show that

A(adj A) = 0.

(b) If
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 5 \\ 2 & -1 \end{pmatrix}$$

, show that A is row

BCS-012

2

3)

2

7

5

5

5

1

5

5

5

Solve the following system of linear (c) equations by using matrix inverse :

$$3x + 4y + 7z = -2$$
$$2x - y + 3z = 6$$

$$2\mathbf{x} + 2\mathbf{v} - 3\mathbf{z} = 0$$

and hence, obtain the value of 3x - 2y + z. 10

Find the sum of first all integers between (**a**) 3. 100 and 1000 which are divisible by 7. 5 5

Use De Moivre's theorem to find $(i + \sqrt{3})^3$. **(b)**

Solve : (c)

 $32x^3 - 48x^2 + 22x - 3 = 0$

given the roots are in A.P.

(**d**) Solve :

$$\frac{2x-5}{x+2} < 5, x \in \mathbf{R}$$

Find the points of local maxima and local (a) 4. minima of

$$f(x) = x^3 - 6x^2 + 9x + 100.$$
 5

$$\int \frac{\mathrm{dx}}{\mathrm{e}^{\mathrm{x}}+1}$$

BCS-012

P.T.O.

5

5

5

(c) Find the area lying between two curves y = 3 + 2x, y = 3 - x, $0 \le x \le 3$, using integration.

5. (a) If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$$
, show that
 $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$.

(b) Check if the lines

$\mathbf{x} - 1$	_ y - 3 _	z+2
4	4	-5 and
x – 8	_ y - 4 _	z – 5
7		3

intersect or not.

(c) Perky Owl takes up designing and photography jobs. Designing job fetches the company ₹ 2000/hr and photography fetches them ₹ 1500/hr. The company can devote at most 20 hours per day to designing and at most 15 hours to photography. If total hours available for a day is at most 30, find the maximum revenue Perky Owl can get per day.

12,000

10

5

5

5

5