MASTER OF ARTS (ECONOMICS)

Term-End Examination December, 2017

MECE-001: ECONOMETRIC METHODS

Time: 3 hours

Maximum Marks: 100

Note: Answer any two questions from Section A.

Answer any five questions from Section B.

SECTION - A

Answer any two questions from this section. 2x20=40

1. The relationship between two variables X and Y is given as $Y_i = \alpha + \beta X_i + \varepsilon_i$.

Data on 5 observations is given as:

OBSERVATION→ VARIABLE↓	1	2	3	4	5
X	1	2	3	4	5
Y	1	4	9	16	25
logX	0	0.30	0.47	0.60	0.69
logY	0	0.60	0.95	1.2	1.39

(a) If all the assumption of the classical linear regression model are fulfilled, how can the above model be estimated using OLS regression

- (b) What are the estimates of the regression coefficients?
- (c) What is the correlation coefficient between X and Y and what is the coefficient of determination (R²) of the regression model?

20

20

2. You are given the following data:

Y	10	12	14	15	20
X ₁	10	15	17	21	23
X ₂	20	30	34	42	46

- (a) Relationship between the variables is given as $Y_i = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i$ can the above model be estimated using the OLS regression method? Explain
- (b) What are the possible remedies for this problem?
- (c) Why is this problem said to be a sample phenomenon?
- 3. Assume that the true model in deviation form is $y_i = \beta_{xi} + \varepsilon_i$

$$Var(\varepsilon_i) = \sigma^2$$

Suppose the observed value of the independent variable is x^* instead of x_i , such that $x_i^* = x_i + v_i$. Assume that the measurement error in x is normally distributed with zero mean, has no serial correlation and is uncorrelated with ε_i .

- (a) Find out the composite error term. Show that it is correlated with the explanatory variable.
- (b) Is $\hat{\beta}$ an unbiased estimator of β ? Prove.

MECE-001

- 4. (a) Show how the annual salary (Y_i) of a school teacher can be modelled as a function of number of years of teaching experience (X_i) and the gender of the teacher. Assume that there is no multiplicative dummy.
 - (b) What will be the interpretation of the regression coefficients?
 - (c) Explain the concept of dummy variable trap.

SECTION - B

Answer any five questions from this section 5x12=60

- Let a random variable X takes values 1, 2,, n. Assume that the probability of occurrence of each value is equal to 1/n. Write down the probability distribution function of X. Find out the mean and variance of X.
- 6. (a) What are the properties of the error term in 12 a simple regression model?
 - (b) What assumption is made about the probability distribution of the error term? What is the usefulness of this assumption?
 - (c) Derive the estimate $\hat{\beta}$, in the simple regression model $Y_i = \alpha + \beta X_i + \epsilon_i$, Using the OLS method.

MECE-001 3 P.T.O.

7.	A researcher wants to estimate a consumption function using the OLS method. He estimates the following model: $C_t = \alpha + \beta_1 Y_t + \beta_2 W_t + \epsilon_t, \ t = 1, \dots, T$ Where, $C_t \rightarrow$ Consumption in time period t $Y_t \rightarrow \text{income in time period t}$ $W_t \rightarrow \text{wealth in time period t}$ (a) Upon estimation. the regression coefficient for W_t turned out to be negative. Do you think it makes sense? Why do you think it	12
	might have happened? (b) What are the other consequences of this problem?	
	(c) How can this problem be corrected?	
8.	 For a regression model Y_i = α + βX_i + ε_i, i = 1,, n it is known that Var(ε_i) ≠ var(ε_j), i ≠ j (a) How does it affect the properties of OLS regression coefficient? (b) If var(ε_i) = σ²X_i, Show how the weighted least squares method can be used to estimate the regression coefficient. 	12
9.	Consider the model: $Y_i = \alpha + \beta_1 X_i + \beta_2 D_{2i} + \beta_3 D_{3i} + u_i$ Where, $Y_i \rightarrow \text{Annual earnings of MBA graduates}$ $X_i \rightarrow \text{Years of service}$ $D_{2i} \rightarrow 1 \text{ if the individual has an MBA degree from Harvard 0 otherwise}$ $D_{3i} = 1 \text{ if the individual has an MBA degree from Yale 0 otherwise}$ 0 otherwise (a) What are the expected signs of various coefficients? (b) How would you interpret β_2 and β_3 ? (c) If $\beta_2 > \beta_3$, What conclusions can be drawn?	12

- Suppose, investment in new equipment (X_t) in period t affects profits (Y_t) over several time periods starting from period t to period t+s
 - (a) Write the above relationship in the form of a distributed lag model.
 - (b) If a Koyck lagged structure is used, what is the way in which the model gets transformed.
 - (c) What is the name given to the transformed model?
 - (d) What are the problems in estimating this model using the OLS method?

12

11. Consider the following model of the market for wheat:

$$\begin{aligned} Q_d &= a_0 + a_1 P_1 + a_2 P_2 + a_3 Y + a_4 t + u \\ Q_s &= b_0 + b_1 P_1 + b_2 P_2 + b_3 Y + b_4 t + w \\ Q_d &= Q_s \end{aligned}$$

Where,

 $Q_d \rightarrow Quantity demanded$

 $Q_s \rightarrow Quantity Supplied$

 $P_1 \rightarrow Price of wheat$

 $P_2 \rightarrow Price of rice$

 $Y \rightarrow income$

 $t \rightarrow time trend$

- (a) Name the endogenous variables.
- (b) Use the order condition to examine the identification of the two equations.
- (c) Use the rank condition to examine the identification of the supply equation.

एम.ई.सी.ई.-001

एम. ए. (अर्थशास्त्र) सत्रांत परीक्षा दिसम्बर, 2017

एम.ई.सी.ई.-001 : अर्थमित्ति विधियाँ

समय: 3 घंटे

अधिकतम अंक : 100

नोट : भाग-क से किन्हीं दो प्रश्नों और भाग-ख से किन्हीं पाँच प्रश्नों के उत्तर दीजिए।

भाग - क

इस भाग से किन्हीं दो प्रश्नों के उत्तर दीजिए:

2x20=40

20

1. दो चरों X और Y का संबंध है, $Y_i = \alpha + \beta X_i + \varepsilon_i$. 5 प्रेक्षणों पर आधारित आँकडे हैं :

प्रेक्षण→ चर ↓	1	2	3	4	5
X	1	2	3	4	5
Y	1	4	. 9	16	25
लॉग X	0	0.30	0.47	0.60	0.69
लॉग Y	0	0.60	0.95	1.2	1.39

(a) यदि क्लासिकी रैखिक समाश्रयण मॉडल की सभी अवधारणाओं को पूरा किया जाय तो उपर्युक्त मॉडल को ओ.एल.एस. समाश्रयण के प्रयोग से कैसे आकलित किया जा सकता है?

- (b) समाश्रयण गुणांक के आकलक क्या हैं?
- (c) X और Y का सहसंबंध गुणांक क्या है? और समाश्रयण मॉडल का निर्धारण गुणांक (R²) क्या है?

2. आपके पास आँकड़ें हैं:

20

Y	10	12	14	15	20
X ₁	10	15	17	21	23
X ₂	20	30	34	42	46

- (a) चरों के बीच का संबंध इस प्रकार है $Y_i = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i$ क्या उपर्युक्त मॉडल को ओ.एल.एस. समाश्रयण विधि से आकलित किया जा सकता है? वर्णन कीजिए।
- (b) इस समस्या के संभावित समाधान क्या है?
- (c) इस समस्या को प्रतिदर्श परिघटना क्यों कहा जाता है?
- 3. मान लीजिए कि विचलन रूप में सही मॉडल है $y_i = \beta_{xi} + \varepsilon_i$ प्रसरण $(\varepsilon_i) = \sigma^2$

20

मान लीजिए कि स्वतंत्र चर का प्रेक्षित मान x_i की बजाए x^* है जहाँ $x_i^* = x_i + v_i$ । मान लीजिए कि x में माप त्रुटि, शून्य माध्य के साथ प्रसामान्य रूप से बंटित है और इसका कोई श्रेणीगत सहसंबंध नहीं है और यह ε_i से असहसंबद्ध है।

- (a) संयुक्त त्रुटि पद का पता लगाइए। दर्शाइए कि यह कारण चर से सहसंबंद्ध है।
- (b) क्या $\hat{\beta}$, β का अनिभनत आकलक है? सिद्ध कीजिए।

- 4. (a) दर्शाइए कि किस प्रकार किसी स्कूल टीचर के वार्षिक 20 वेतन (Y_i) को पढ़ाने के अनुभव के वर्षों (X_i) की संख्या के फलन और अध्यापक के स्त्री या पुरुष होने के रूप में मॉडलबद्ध किया जा सकता है? मान लीजिए कि यहाँ कोई गुणात्मक डमी नहीं है।
 - (b) समाश्रयण गुणांकों की व्याख्या क्या होगी?
 - (c) डमी चर पाश (dummy variable trap) की संकल्पना का भी वर्णन कीजिए।

भाग - ख

इस भाग से किन्हीं पाँच प्रश्नों के उत्तर दीजिए : 5x12=60

- 5. यादृच्छिक चर X के 1, 2,, n मान हैं। मान लीजिए कि 12 प्रत्येक मान की उत्पत्ति की प्रायिकता, ¹/_n के बराबर है। X के प्रायिकता बंटन फलन को लिखिए और X के माध्य और प्रसरण का पता लगाइए।
- 6. (a) साधारण समाश्रयण मॉडल में त्रुटि पद के गुणधर्म क्या 12 हैं?
 - (b) त्रुटि पद के प्रायिकता बंटन के बारे में निर्मित अवधारणाएं क्या हैं? इस अवधारणाओं की उपयोगिता क्या है?
 - (c) साधारण समाश्रयण मॉडल $Y_i = \alpha + \beta X_i + \epsilon_i$ में, ओ.एल.एस. विधि से आकलक $\hat{\beta}$ व्युत्पन्न कीजिए।

7.	शोधकर्त्ता, ओ.एल.एस. विधि से उपभोग फलन आकलित करना चाहता है। वह, निम्नलिखित मॉडल का आकलन करता है:	12
	$C_t = \alpha + \beta_1 Y_t + \beta_2 W_t + \epsilon_t$, $t = 1$,, T जहाँ है, $C_t \rightarrow$ समयाविध t में उपभोग	
	$Y_t \rightarrow समयाविध t में आय$	
	W. → समयावधि t में संपत्ति	

- (a) आकलन के आधार पर W_t के लिए समाश्रयण गुणांक नकारात्मक नज़र आता है। क्या आपकी नज़र में यह सार्थक है? क्यों आप सोचते हैं कि ऐसा हुआ होगा?
- (b) इस समस्या के अन्य परिणाम क्या हैं?
- (c) इस समस्या को ठीक कैसे किया जा सकता है?
- 8. समाश्रयण मॉडल के लिए $Y_i = \alpha + \beta X_i + \epsilon_i, \ i = 1,, \ n$ ज्ञात है कि प्रसरण $(\epsilon_i) \neq y$ सरण $(\epsilon_j), \ i \neq j$ (a) ओ.एल.एस. समाश्रयण गुणांक के गुणधर्म, इससे कैसे
 - (a) ओ.एल.एस. समाश्रयण गुणांक के गुणधर्म, इससे कैसे प्रभावित होते हैं?
 - (b) यदि प्रसरण (ε_i) = σ²X_i, दर्शाइए किस प्रकार भारित न्यूनतम वर्ग विधि का प्रयोग समाश्रयण गुणांक के आकलन हेतु किया जा सकता है?
- 9. इस मॉडल पर विचार कीजिए : 12 $Y_i = \alpha + \beta_1 X_i + \beta_2 D_{2i} + \beta_3 D_{3i} + u_i$ जहाँ है, $Y_i \to \text{एम.बी.v. स्नातकों की वार्षिक आय}$ $X_i \to \text{सेवा के वर्ष}$

- $D_{2i} \to 1$ यदि व्यक्ति-विशेष ने हार्वर्ड से एम.बी.ए. की डिग्री प्राप्त की हो अन्यथा 0
- $D_{3i} = 1$ यदि व्यक्ति-विशेष ने येल से एम.बी.ए. की डिग्री प्राप्त की हो अन्यथा 0
- (a) विविध गुणाकों के प्रत्याशित संकेत क्या हैं?
- (b) $β_2$ और $β_3$ को आप व्यक्त कैसे करेंगे?
- (c) यदि $\beta_2 > \beta_3$ तो किन परिणामों की प्राप्ति की जा सकती $\frac{1}{8}$?

12

- 10. मान लीजिए कि t से (t+s) तक की विविध समयाविधयों में t अविध में नये उपकरण (X_t) में निवेश, मुनाफों (Y_t) को प्रभावित करता है
 - (a) उपर्युक्त संबंध को बंटित पश्च मॉडल के रूप में लिखिए।
 - (b) यदि कॉयक (Koyck) पश्चित (lagged) संरचना का प्रयोग किया जाता है तो किस तरीके से मॉडल को परिवर्तित किया जा सकता है?
 - (c) परिवर्तित मॉडल को क्या नाम दिया जाता है?
 - (d) इस मॉडल को ओ.एल.एस. विधि से आकलित करने से जुड़ी समस्याएँ क्या हैं?
- 11. गेहूँ के संबंध में बाजार के निम्नलिखित मॉडल पर विचार 12 कीजिए:

$$Q_d = a_0 + a_1P_1 + a_2P_2 + a_3Y + a_4t + u$$

 $Q_s = b_0 + b_1P_1 + b_2P_2 + b_3Y + b_4t + w$
 $Q_d = Q_s$
 \overline{q}

 $Q_d \rightarrow$ परिमात्रा माँगित (demanded)

 $Q_{s} \rightarrow आपूर्तित परिमात्रा$

 $P_1 \rightarrow \tilde{\eta}$ हूँ का मूल्य

 $P_2 \rightarrow \text{चावल का मूल्य}$

Y → आय

t → काल प्रवृत्ति

- (a) अंतर्जात चर का नाम लिखिए।
- (b) दो समीकरणों के अभिनिर्धारण (identification) की जाँच हेतु क्रम शर्त (order condition) का प्रयोग करें।
- (c) आपूर्ति समीकरण के अभिनिर्धारण की जाँच हेतु कोटि शर्त (rank condition) का प्रयोग करें।