## POST GRADUATE DIPLOMA IN APPLIED STATISTICS (PGDAST)

## Term-End Examination

## MSTL-001/S2 : BASIC STATISTICS LAB SET-2

Time : 3 Hours
Maximum Marks : 50
Note: (i) Attempt any two questions.
(ii) Solve the questions in Microsoft Excel.
(iii) Use of Formulae and Statistical Tables Booklet for PGDAST is allowed.
(iv) Mention necessary steps, hypotheses, interpretation, etc.

1. (a) A power bank manufacturing company manufactured a new fast charging power bank which is supposed to be better than the power bank of an old reputed brand. Thirty power banks of both the brands were tested to determine how long they would take to be charged. The results to the nearest minute, were recorded in the following table :

| S. No. | Power Bank |  |
| :---: | :---: | :---: |
|  | Old | New |
| 1 | 335 | 308 |
| 2 | 383 | 328 |
| 3 | 325 | 301 |
| 4 | 380 | 316 |
| 5 | 351 | 312 |
| 6 | 364 | 341 |
| 7 | 381 | 301 |
| 8 | 391 | 361 |
| 9 | 405 | 335 |


| S. No. | Power Bank |  |
| :---: | :---: | :---: |
|  | Old | New |
| 10 | 390 | 350 |
| 11 | 401 | 381 |
| 12 | 421 | 376 |
| 13 | 381 | 309 |
| 14 | 443 | 391 |
| 15 | 355 | 361 |
| 16 | 378 | 343 |
| 17 | 420 | 332 |
| 18 | 373 | 348 |
| 19 | 360 | 308 |
| 20 | 435 | 339 |
| 21 | 363 | 317 |
| 22 | 377 | 323 |
| 23 | 410 | 351 |
| 24 | 393 | 381 |
| 25 | 361 | 332 |
| 26 | 392 | 341 |
| 27 | 388 | 350 |
| 28 | 399 | 319 |
| 29 | 411 | 312 |
| 30 | 415 | 348 |

(i) Which brand of power bank is more consistent?
(ii) Compute the suitable width of the class intervals for both brands and construct the continuous frequency distributions.
(iii) Also, construct the histogram for both the brands and interpret the results.
(b) A company conducted a survey a few years ago and found out that $15 \%$ of its employees have two sources of income. The company wants to cross verify this finding since the data is old. For this purpose, the company takes a random sample of 20 employees and obtains the following results :

| Employee <br> No. | Two Sources <br> of Income |
| :---: | :---: |
| 1 | No |
| 2 | Yes |
| 3 | No |
| 4 | No |
| 5 | No |
| 6 | Yes |
| 7 | No |
| 8 | No |
| 9 | No |
| 10 | Yes |
| 11 | Yes |
| 12 | No |
| 13 | No |
| 14 | No |
| 15 | Yes |
| 16 | Yes |
| 17 | No |
| 18 | No |
| 19 | Yes |
| 20 | No |

Test the hypothesis at $5 \%$ level of significance to check the company's claim.
2. (a) The number of automobiles arriving at 4 toll gates were recorded for a 2-hour time period ( 10 AM to 12 Noon) for each of the six working days. The data are as follows:

| Day | Gate 1 | Gate 2 | Gate 3 | Gate 4 |
| :---: | :---: | :---: | :---: | :---: |
| Mon | 200 | 228 | 212 | 301 |
| Tues | 208 | 230 | 215 | 305 |
| Wed | 225 | 240 | 228 | 288 |
| Thur | 223 | 242 | 224 | 212 |
| Fri | 228 | 210 | 235 | 215 |
| Sat | 220 | 208 | 245 | 200 |

Determine whether the rate of arrival is same (i) at each toll gate, and (ii) during the six days or not, at $5 \%$ level of significance.

If not, carry out the pairwise comparisons.
(b) A company organised a training programme. After the first week, the company officials evaluated the training programme. The scores (out of 100) of 40 employees are presented below :

| 32 | 36 | 31 | 67 | 65 | 74 | 43 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 42 | 39 | 56 | 78 | 61 | 46 | 56 |
| 34 | 78 | 75 | 78 | 61 | 41 | 31 |
| 29 | 65 | 45 | 48 | 78 | 62 | 76 |
| 43 | 75 | 64 | 73 | 87 | 65 | 41 |
| 31 | 56 | 71 | 81 | 85 |  |  |

Construct a box-plot and interpret it. 10
3. (a) A researcher wants to know the difference in the saving pattern of people from two cities. One metro and the other, non-metro. $\mathrm{He} / \mathrm{she}$ collects the data related to the amount saved monthly by different employees of central government in both the cities. The researcher took a random sample of size 35 from both the cities. The data collected for both the cities are given below :

| Sample from the Metro City (in ₹ '000) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 11 | 12 | 12 | 11 | 12 | 10 | 8 | 12 |
| 12 | 11 | 9 | 10 | 9 | 9 | 11 | 11 | 10 |
| 10 | 11 | 8 | 10 | 10 | 10 | 3 | 11 | 9 |
| 7 | 12 | 12 | 7 | 5 | 12 | 8 | 10 |  |
| Sample from the Non-Metro City (in ₹ '000) |  |  |  |  |  |  |  |  |
| 15 | 14 | 17 | 16 | 15 | 14 | 15 | 14 | 13 |
| 13 | 17 | 15 | 14 | 14 | 11 | 15 | 14 | 17 |
| 13 | 15 | 16 | 17 | 18 | 13 | 14 | 17 | 17 |
| 14 | 15 | 16 | 18 | 16 | 15 | 17 | 15 |  |

Test whether there is a significant difference in the saving pattern of the employees in the metro and non-metro cities.
(b) A researcher wants to know the degree of association between petrol and diesel prices. For this, he/she has selected a random sample of 10 months' price (in ₹) of petrol and diesel for the last 20 years. Compute the Spearman's rank correlation coefficient for the following data :

| Months | Petrol Price | Diesel Price |
| :---: | :---: | :---: |
| 1 | 20 | 10 |
| 2 | 15 | 9 |
| 3 | 25 | 14 |
| 4 | 28 | 12 |
| 5 | 26 | 13 |
| 6 | 32 | 15 |
| 7 | 35 | 23 |
| 8 | 32 | 23 |
| 9 | 31 | 20 |
| 10 | 44 | 30 |

