No. of Printed Pages: 7

MSTE-001

POST GRADUATE DIPLOMA IN APPLIED STATISTICS (PGDAST)

Term-End Examination

December, 2017

00871

MSTE-001 : INDUSTRIAL STATISTICS |

Time : 3 hours

Maximum Marks : 50

Note :

- (i) All questions are **compulsory**. Questions no. 2 to 5 have internal choices.
- (ii) Use of scientific calculator is allowed.
- (iii) Use of Formulae and Statistical Tables Booklet for PGDAST is allowed.
- (iv) Symbols have their usual meanings.
- 1. State whether the following statements are *True* or *False*. Give reasons in support of your answers. $5\times 2=10$
 - (a) The variation due to chance causes in the diameter of ball bearing is not tolerable.
 - (b) The process capability of a manufacturing process of a certain type of bolt, with mean diameter 2 inches and standard deviation 0.05 inches, will be 0.30.
 - (c) If the probability of accepting a lot of satisfactory quality is 0.9401, then the producer's risk will be 0.9401.
 - (d) Hurwicz criterion is a method to solve the problems that involve decision-making under certainty.

MSTE-001

P.T.O.

- (e) Two independent components of a system are connected in parallel configuration. If the reliabilities of these components are 0.6 and 0.7 respectively, the reliability of the system will be 0.42.
- 2. A factory producing dry-cells wanted to test the life of cells produced daily. The cells will be considered satisfactory if their life is 25 hours. For this, a sample of 5 cells was drawn on 12 consecutive days. The results are as follows :

Days	Life of Cells (in hours)						
	1	2	3	4	5		
1	27.0	28 ·0	25.5	26.5	23.0		
2	23.5	27.5	26·0	27.0	29 ·0		
3	27.5	27.0	28·0	26.5	24.5		
4	28.0	26.5	27.5	28.5	27.0		
5	27.5	24.5	25.0	26·0	27.5		
6	26.5	26 ·0	27.0	27.5	26 ·0		
7	21.0	22.0	28·0	26.5	25.0		
8	25.5	24.5	25.0	27.5	27.5		
9	28 ·0	26.5	30.0	29.5	27.0		
10	25.0	27.0	26.5	24.5	23.0		
11	22·0	26.5	27.5	23.5	25.5		
12	26.0	28·0	27.0	30.0	29 ·0		

Check whether the process mean and variability are under statistical control, using suitable control charts. Also, compute revised control limits if the process is out-of-control.

OR

10

MSTE-001

(a) Sixteen boxes of electric switches each containing 20 switches were randomly selected from a lot of switch boxes and inspected for the number of defects per box. The number of defects per box were as follows:

12, 15, 9, 14, 18, 26, 8, 6, 11, 12, 16, 13, 13, 19, 18, 14, 21

Draw a suitable control chart and state whether the process is under statistical control or not.

(b) A TV voltage stabilizer manufacturer checks the quality of 50 units of his product daily for 15 days and finds the fraction of non-conforming units as follows:

Day	Fraction Defective		
1	0.10		
2	0.20		
3	0.06		
4	0.04		
5	0.16		
6	0.02		
7	0.08		
8	0.06		
9	0.02		
10	0.16		
11	0.12		
12	0.14		
13	0.08		
14	0.10		
15	0.06		

Construct the appropriate control chart and state whether the process is under statistical control or not. 5+5

MSTE-001

027 62

3

P.T.O.

- 3. A leather bag manufacturing company supplies bags in lots of size 150 to a buyer. A single sampling plan with n = 10 and c = 1 is being used for the lot inspection. The company and the buyer decide that AQL = 0.08 and LTPD = 0.16. If there are 15 defective bags in each lot, compute the
 - (a) probability of accepting the lot,
 - (b) producer's risk and consumer's risk,
 - (c) AOQ, if the rejected lots are screened and all defective bags are replaced by non-defectives, and
 - (d) average total inspection.

2+4+2+2

OR

A manufacturer of computer chips produces lots of 1000 chips for shipment. A buyer uses a double sampling plan with $n_1 = 5$, $c_1 = 0$, $n_2 = 20$, $c_2 = 5$ to test the quality of the lots. If the incoming quality of the lot is 0.03, calculate the

- (a) probabilities of accepting the lot on the first and second samples,
- (b) probability of accepting the lot,
- (c) AOQ, if the rejected lots are screened and all defective chips are replaced by non-defectives, and
- (d) average total inspection. 6+1+1+2

MSTE-001

4. A glass factory specialised in crystals is developing a substantial backlog and the firm's management is considering three courses of action : Arrange for sub-contracting (S_1) , begin overtime production (S_2) , and construct new facilities (S_3) . The correct choice depends largely upon future demand which may be low, medium or high. By consensus, the management ranks the respective probabilities as 0.10, 0.50 and 0.40. A cost analysis reveals effect upon the profits shown in the following table :

Demand	Probability	Course of Action		
Demanu	Trobability	S ₁	S_2	S ₃
Low (L)	0.10	10	- 20	- 150
Medium (M)	0.20	50	60	20
High (H)	0.40	50	100	200

Show this decision situation in the form of a decision tree and indicate the most preferred decision and corresponding expected value.

10

OR

MSTE-001

P.T.O.

 (a) A company management and the labour union are negotiating a new three-year settlement. Each of these has 4 strategies. The costs to the company are given for every pair of strategy choice as follows :

Union Strategies	Company Strategies			
o mon otrategies	Ι	Π	III	IV
Ι	20	15	12	35
II	25	14	8	10
III	40	2	10	5
IV	- 5	4	11	0

- (i) What strategy will the two sides adopt?
- (ii) Determine the value of the game.
- (iii) Obtain the saddle point.
- (iv) Is the game strictly determinable and fair?
- (b) In a game of matching coins with two players, suppose A wins one unit of value when there are two heads, wins nothing when there are two tails and looses 1/2 unit of value when there is one head and one tail. Then determine
 - (i) the payoff matrix,
 - (ii) the best strategies for each player, and
 - (iii) the value of the game to A.

MSTE-001

5+5

5. The density function of the time-to-failure in years of a particular component is given by : 100

$$f(t) = \frac{100}{(t+10)^3}; t \ge 0.$$

Calculate :

- (a) Reliability of the component
- (b) Reliability after 2 years of operation
- (c) Mean time to failure
- (d) Failure rate
- (e) Life of the component if a reliability of 0.45 is desired

OR

Evaluate the reliability of the system for which the reliability block diagram is shown in the figure given below :

Assume that all components are independent and the reliability of each component is given as follows:

 $R_1 = 0.7, R_2 = 0.8, R_3 = 0.6, R_4 = 0.55,$

 $R_5 = 0.5, R_6 = 0.6, R_7 = 0.7 \text{ and } R_8 = 0.95,$

where R_i denotes the reliability of the ith component, (i = 1, 2, 3, ..., 8). 10

MSTE-001

2,000

10