POST GRADUATE DIPLOMA IN APPLIED STATISTICS (PGDAST)

Term-End Examination

December, 2017

MST-001 : FOUNDATION IN MATHEMATICS AND STATISTICS

Time: 3 hours
Maximum Marks : 50
Note:
(i) Attempt all questions. Questions no. 2 to 5 have internal choices.
(ii) Use of scientific calculator is allowed.
(iii) Use of Formulae and Statistical Tables Booklet for PGDAST is allowed.
(iv) Symbols have their usual meanings.

1. State whether the following statements are True or False. Give reasons in support of your answer. $5 \times 2=10$
(a) The function $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$ is an even function.
(b) The ogive of less-than-type and more-than-type of a distribution intersect at mode.
(c) If $A=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$, then $\mathrm{AB}=\left[\begin{array}{lll}1 & 4 & 9\end{array}\right]$.
(d) If $f(x)=\left\{\begin{array}{ll}2-x^{2}, & x \neq 1 \\ 2+x^{2}, & x=1\end{array}\right.$, then $\lim _{x \rightarrow 1} f(x)=1$.
(e) The data of number of cars on the roads of Delhi at an even date under the Even-Odd scheme of Delhi Government, is continuous.
2. (a) How many terms are there in the sequence
$-1,-\frac{1}{4}, \frac{1}{2}, \ldots, 14$?
(b) Show that $4^{1 / 4} \cdot 4^{1 / 8} \cdot 4^{1 / 16} \cdot \ldots . \infty=2$.
(c) If $A=\{2,4,6\}, \quad B=\{1,2,3,4,5\} \quad$ are the subsets of the universal set $\mathrm{U}=\{1,2,3,4,5,6,7,8,9\}$, then verify De Morgan's law $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$. 5

OR

(a) Find the total number of ways of selecting 11 players out of 15 players such that
(i) two particular players are always included,
(ii) two particular players are always excluded.
(b) Define one-one function and onto function with examples.
3. (a) Find the derivative of the function

$$
\begin{equation*}
y=(3 x+2)^{4}(6 x+3)^{6} \text { w.r.t. } x . \tag{5}
\end{equation*}
$$

(b) Evaluate :

$$
\int_{0}^{1} \frac{2 x+5}{\left(x^{2}+5 x+7\right)^{5}} d x
$$

OR

(a) Check the continuity of the following function at point $\mathrm{x}=2$:

4

$$
f(x)=\left\{\begin{array}{cl}
x^{2}+1, & x \leq 2 \tag{3}\\
3+x, & x>2
\end{array}\right.
$$

(b) Find $\frac{d y}{d x}$ if $x=2+4 t^{2}, y=9 t^{2}+4 t+1$.
(c) Find the points of local maxima or minima of the function $f(x)=2 x^{3}-15 x^{2}+36 x+9$.
4. (a) Draw the histogram for the following data :

Class Interval	Frequency
$0-10$	3
$10-20$	8
$20-30$	10
$30-50$	12
$50-70$	20
$70-100$	15

(b) The marks (out of 50) of 20 students in MST-001 are given below :

$$
\begin{aligned}
& 21,02,18,33,40,06,50,40,46,15 \\
& 40,28,17,35,26,32,21,46,32,50
\end{aligned}
$$

Draw a simple stem-and-leaf display by taking stem width at 10.

OR

(a) Draw a suitable diagram for the data of monthly expenditure (in ₹) of two families given below :

Item	Family A	Family B
Food	4,000	5,000
Clothing	2,000	2,000
Education	2,800	2,000
Miscellaneous	1,200	1,000

(b) The wages (in ₹) per day of 25 workers in a factory are given below :
$100,250,120,340,500,250,150,300,460$, $350,400,200,150,150,180,400,220,340$, $160,500,430,250,300,200,350$
(i) Construct a continuous frequency distribution of the above data by taking suitable class width, and
(ii) Prepare the relative frequency distribution.
5. (a) Identify, giving reasons, which scale is used in the classification of soldiers of India based on their
(i) region,
(ii) performance,
(iii) education, and
(iv) height. 4
(b) Solve the following system of equations by using Cramer's rule :

$$
\begin{aligned}
& 3 x+5 y=-11 \\
& 2 x-3 y=18
\end{aligned}
$$

OR

(a) Show that

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
x & y & z \\
x^{2} & y^{2} & z^{2}
\end{array}\right|=(x-y)(y-z)(z-x)
$$

(b) What do you mean by Primary data and Secondary data? Also give an example for each.

