No. of Printed Pages: 4

P.G. DIPLOMA IN ANALYTICAL CHEMISTRY (PGDAC)

Term-End Examination

DCIEZ1 December, 2017

MCH-003 : SPECTROSCOPIC METHODS

Time : 3 hours					Maximum Marks : 75					
37 .	A	<u>~</u>		•		Owertian		7	ia	

Note : Answer **five** questions in all. Question no. 1 is **compulsory**.

- **1.** Answer any *five* of the following : $5 \times 3 = 15$
 - (a) What are the main signals of the pure vibrational spectrum of a diatomic molecule?
 - (b) Explain the mull technique for handling a solid sample in IR spectroscopy.
 - (c) Explain fluorescence quenching with the help of an example.
 - (d) Describe in brief, the principle of atomic fluorescence spectrometry.
 - (e) How is a sample prepared for atomic absorption spectrophotometry?
 - (f) Draw a low and high resolution NMR spectra of ethanol.

MCH-003

P.T.O.

MCH-003

2.	(a)	Name the additional bands arising out of the fundamental frequencies and corresponding overtones in the IR spectra of polyatomic molecules.	5					
	(b) What is Fingerprint Region ? How is the spectra used to check the authenticity o compound ?							
	(c)	What is Photoluminescence ? How is it related to the structure of a molecule ?	5					
3.	(a)	Draw the schematic layout of a fluorimeter. How is it different from absorption spectrometer ?	5					
	(b)	What is meant by anti-Stokes fluorescence ? Draw its schematic energy level diagram.	5					
	(c)	Draw the structure of a flame showing different zones. Which of the zones is most oxidising ?	5					
4.	(a)	WhataretheadvantagesanddisadvantagesofMicrowaveInducedPlasma (MIP)overInductivelyCoupledPlasma (ICP)?	5					
	(b)	Discuss the merits of AAS and write any two of its limitations.						
мсн	I-003	2						

- (c) NMR spectrum of an organic compound with molecular formula $C_4H_7BrO_2$ recorded using TMS as a standard gives a triplet, a quartet and a triplet at $\delta = 1.2$, 2.1 and 4.2 ppm, respectively. In addition, a sharp peak is observed at $\delta = 11$. Predict the structure of the compound.
- 5. (a) Describe in brief, the Resonance Raman Spectroscopy (RRS).
 - (b) Draw a schematic labelled diagram of the experimental set-up of a dispersion Raman spectrometer.
 - (c) Explain extractive fluorimetry with the help of suitable examples.
- 6. (a) Why is phosphorescence measured in viscous media or from molecules absorbed on solid surfaces ? Why is it preferred to degas the solution prior to measuring its phosphorescence ?
 - (b) What are the most important reactions that occur in the flame during flame photometry? 5
 - (c) What are the different types of plasma sources in atomic emission spectrometry ?
 Write the advantages of any one of the sources.

MCH-003

5

5

5

5

5

5

P.T.O.

3

- 7. (a) Describe how ICP-AES is used for quantitative analysis. Draw a typical calibration plot for this.
 - (b) Compare the characteristic features of AAS and AES and discuss their advantages over one another.
 - (c) Write the characteristic features of a mass spectrum.
- 8. (a) What is the origin of isotopic peaks in the mass spectrum of a molecule ? Discuss in brief, the applications of mass spectrometry.
 - (b) Describe the methodology followed for quantitative determinations using the uv-visible spectrophotometry.
 - (c) Discuss the quantitative applications of flame photometry with the help of suitable examples.

5

5

5

5

5

5

4