M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Dロ9B1 Term-End Examination
 December, 2017
 MMTE-005 : CODING THEORY

Time: 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note: Answer any four questions from questions no. 1 to 5. Question no. 6 is compulsory.

1. (a) Let C be the code generated by the matrix
$G=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1\end{array}\right]$ over \mathbf{F}_{3}.
(i) How many codewords will C have, and why?
(ii) Give three distinct codewords of C and find their Hamming weights.
(iii) List all the steps required for finding
the minimum distance of any code. 7
(b) Write the generator matrix for the Reed-Muller code $\mathrm{R}(2,4)$.
2. (a) Give the minimal polynomial, over \mathbf{F}_{2}, of each element of \mathbf{F}_{8}.
(b) Let C be a non-zero cyclic code in \mathbf{R}_{n}. Prove that there exists $\mathrm{g}(\mathrm{x}) \in \mathrm{C}$ such that $\mathrm{g}(\mathrm{x})$ divides ($\mathrm{x}^{\mathrm{n}}-1$).
3. (a) Construct a BCH code over \mathbf{F}_{3} of length 13 and design distance 2 with the primitive element α satisfying $x^{3}+2 x+1=0$. Justify each step of your construction.
(b) Let C be an extended binary Golay code. Show that $A_{0}=A_{24}=1$, and find A_{n} where n is not divisible by 4 and $n<24$.
(c) Check whether or not there are self-dual, extended cyclic binary codes of lengths 7 and 17.
4. (a) Find the weight distribution and weight enumerator of the code C generated by the matrix $\left[\begin{array}{cccccc}1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$ over \mathbf{F}_{2}.
(b) Let C be the code generated by the matrix $G=\left[\begin{array}{llll}1 & 2 & 3 & 1 \\ 0 & 1 & 2 & 3\end{array}\right]$ over Z_{4}.
(i) List all codewords of C .
(ii) What is the minimum distance of C ?
(iii) List all codewords of the Gray image of C.
5. (a) Find the convolutional code for the message 11011. The convolutional encoder is given below.

(b) Describe the Viterbi Decoding Algorithm, with an example.
6. Which of the following statements are True and which are False? Give reasons for your answers. 10
(a) Every binary Hamming code is a cyclic code.
(b) $\quad R_{q, n}=F_{q}[X] /<x^{n}-1>$ is a field if and only if $n=1$.
(c) The degree of a generator polynomial of a cyclic code is equal to the dimension of the code.
(d) There is no self-dual code of length 5 .
(e) There is no $(5,3,4)$ LDPC code.
