M.Sc. (MATHEMATICS WITH APPLICATIONS
 IN COMPUTER SCIENCE)
 $\square 191$ M.Sc. (MACS)

Term-End Examination
December, 2017

MMTE-001 : GRAPH THEORY

Time: 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note: Question no. 1 is compulsory and carries 10 marks. Answer any four out of questions no. 2 to 7. Computational devices such as electronic calculators, watches, etc. are not allowed.

1. (a) Define Isomorphism between graphs. Are the graphs G_{1} and G_{2} isomorphic ? Explain your answer.
(b) Define the k-dimensional cube $\mathrm{Q}_{\mathbf{k}}$. Is Q_{k} bipartite? Justify your answer. 3
(c) Let G be a connected graph and V be its vertex set. Show that the function $\mathrm{d}: \mathrm{V} \times \mathrm{V} \rightarrow \mathbf{Z}$, defined by $\mathrm{d}(\mathrm{u}, \mathrm{v})$, which represents the number of edges of the shortest u -v path, is a metric on V .
2. (a) Define chromatic number $\chi(G)$ and clique number $\omega(G)$ of a graph G. State and prove a relation between them.
(b) Find all maximal paths, maximal cliques and maximal independent sets in the graph.

(c) Suppose G is a connected, bipartite graph. Prove that G has a unique bipartition.
3. (a) If G and H are two simple graphs with vertex set V, then prove that $d_{G}(v)=d_{H}(v)$ for every $v \in V$ if, and only if, there is a sequence of 2 -switches that transforms G into H .
(b) Let u and v be adjacent vertices in a graph G with n vertices. Prove that uv belongs to at least $\mathrm{d}(\mathrm{u})+\mathrm{d}(\mathrm{v})-\mathrm{n}$ triangles in G .
4. (a) Prove that Kruskal's algorithm constructs a minimum-weight spanning tree in a connected weighted graph G.
(b) Show that the graph $\mathrm{K}_{2,3}$ is planar and $\mathrm{K}_{3,3}$ is not planar.
5. (a) If a matching M in a graph G has no M-augmenting path, then show that \mathbf{M} is maximum. Is the converse true ? Justify your answer by either giving a counter example or by giving a proof of the converse statement.
(b) If G is a connected graph which is neither a complete graph nor an odd cycle, then show that $\Delta(G) \geq \chi(G)$.
6. (a) Check whether the following graph is Hamiltonian. Justify your answer.

(b) Show that every Eulerian bipartite graph has an even number of edges.
(c) Use Mycielski's construction to construct a 3 -chromatic, triangle-free graph from the following graph :

7. State, with justifications or illustrations, whether each of the following statements is True or False : $5 \times 2=10$
(a) Every tree with two or more vertices is bipartite.
(b) For every $\mathrm{k} \in \mathbf{N}$, every k-regular bipartite graph has a perfect matching.
(c) If u and v are the only vertices of odd degree in a graph G, then G contains a $u-v$ path.
(d) The sequence $(4,4,4,3,3,3,2,2,2,1,1,1)$ is a graphic sequence.
(e) If P is a $u-v$ path in a 2 -connected graph G, then there is a $u-v$ path Q internally disjoint from P.
