No. of Printed Pages: 4

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

00191

Term-End Examination

M.Sc. (MACS)

December, 2017

MMTE-001 : GRAPH THEORY

Time : 2 hours

Maximum Marks : 50 (Weightage : 50%)

- Note: Question no. 1 is compulsory and carries 10 marks. Answer any four out of questions no. 2 to 7. Computational devices such as electronic calculators, watches, etc. are **not** allowed.
- 1. (a) Define Isomorphism between graphs. Are the graphs G_1 and G_2 isomorphic ? Explain your answer.
 - (b) Define the k-dimensional cube Q_k . Is Q_k bipartite? Justify your answer.
 - (c) Let G be a connected graph and V be its vertex set. Show that the function $d: V \times V \rightarrow Z$, defined by d(u, v), which represents the number of edges of the shortest u-v path, is a metric on V.

MMTE-001

.....

MMTE-001

4

3

3

P.T.O

- 2. (a) Define chromatic number $\chi(G)$ and clique number $\omega(G)$ of a graph G. State and prove a relation between them.
 - (b) Find all maximal paths, maximal cliques and maximal independent sets in the graph.

- (c) Suppose G is a connected, bipartite graph.Prove that G has a unique bipartition.
- 3. (a) If G and H are two simple graphs with vertex set V, then prove that $d_G(v) = d_H(v)$ for every $v \in V$ if, and only if, there is a sequence of 2-switches that transforms G into H.
 - (b) Let u and v be adjacent vertices in a graph
 G with n vertices. Prove that uv belongs to at least d(u) + d(v) n triangles in G.
- **4.** (a) Prove that Kruskal's algorithm constructs a minimum-weight spanning tree in a connected weighted graph G.
 - (b) Show that the graph $K_{2,3}$ is planar and $K_{3,3}$ is not planar.

MMTE-001

2

4

3

3

6

4

4

6

- 5. (a) If a matching M in a graph G has no M-augmenting path, then show that M is maximum. Is the converse true ? Justify your answer by either giving a counter example or by giving a proof of the converse statement.
 - (b) If G is a connected graph which is neither a complete graph nor an odd cycle, then show that $\Delta(G) \ge \chi(G)$.
- 6. (a) Check whether the following graph is Hamiltonian. Justify your answer.

- (b) Show that every Eulerian bipartite graph has an even number of edges.
- (c) Use Mycielski's construction to construct a 3-chromatic, triangle-free graph from the following graph :

3

MMTE-001

P.T.O.

3

4

4

6

3

- 7. State, with justifications or illustrations, whether each of the following statements is True or False: $5\times 2=10$
 - (a) Every tree with two or more vertices is bipartite.
 - (b) For every $k \in N$, every k-regular bipartite graph has a perfect matching.
 - (c) If u and v are the only vertices of odd degree in a graph G, then G contains a u-v path.
 - (d) The sequence (4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1) is a graphic sequence.
 - (e) If P is a u v path in a 2-connected graph G, then there is a u - v path Q internally disjoint from P.