MMT-008

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

D0551

Term-End Examination

December, 2017

MMT-008 : PROBABILITY AND STATISTICS

Time : 3 hours

Maximum Marks : 100

(Weightage : 50%)

Note: Question no. 8 is compulsory. Answer any six questions from questions no. 1 to 7. Use of scientific, non-programmable calculator is allowed. All the symbols used have their usual meaning.

1. (a) Let X follows
$$N_3(\mu, \Sigma)$$
 with

$$\mu = \begin{bmatrix} -3 \\ 1 \\ 4 \end{bmatrix} \sum = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix} \text{ and } \mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}.$$
Examine the independence of the following : 8
(i) X_1 and X_2
(ii) (X_1, X_2) and X_3
(iii) $\frac{X_1 + X_2}{2}$ and X_3

MMT-008

(b) On the basis of sales (X₁) and profits (X₂) of
 10 industries, the following sample mean
 was obtained :

$$\overline{\mathbf{X}} = \begin{pmatrix} \overline{\mathbf{X}}_1 \\ \overline{\mathbf{X}}_2 \end{pmatrix} = \begin{pmatrix} 33 \\ 7 \end{pmatrix}$$

Expected mean vector and variance-covariance matrix is

$$\mu = \begin{bmatrix} 30\\10 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 10 & 5\\5 & 4 \end{bmatrix}, \text{ respectively.}$$

Test whether the sample confirms the truthness of mean vector at 5% level of significance. [You may use the values : $\chi^2_{2,\ 0.05} = 5.99$, $\chi^2_{9,\ 0.05} = 16.92$]

7

2. (a) Let a random variable X have the following probability distribution :

X	-2	-1	0	1	2
f(x)	0.15	0.2	0.3	0.5	0.15

Assume $Y = X^2$.

- Obtain joint probability distribution of X and Y.
- (ii) Obtain covariance of X and Y.
- (iii) Examine the independence of X and Y. 7

MMT-008

- (b) A post-office has two counters. The first counter handles speed post and the second counter handles all the other tasks. Service times of both the counters follow exponential law with mean 4 minutes. Customers arrive at the first counter at the rate of 12 per hour and at the second counter at the rate of 13 per hour in a Poisson way.
 - (i) Obtain the average waiting time in queue at both the counters.
 - (ii) If both the counters are allowed to handle all the tasks, then obtain the average waiting time in queue by the customers.
- 3. (a) Obtain a lower triangular square root of the matrix $\begin{bmatrix} 9 & 3 & 3 \\ 3 & 5 & 1 \\ 3 & 1 & 6 \end{bmatrix}$.
 - (b) Weather data on four variables, $x_1 =$ average minimum temperature, $x_2 =$ average relative humidity in a span of 8 hours, $x_3 =$ average relative humidity in a span of 14 hours and $x_4 =$ total rainfall in 17 years from 1970 to 1986 are provided in the following variance-covariance matrix :

MMT-008

3

P.T.O.

8

ļ	17 ∙02	- 4 ·12	1.54	5.14
-		7.56	8.50	54.82
Σ =			15.75	92·95
				903·87

The eigenvalue-eigenvector pairs of Σ are

$\lambda_1 = 916.9$	$a_1 = (0.006, 0.061, 0.103, 0.993)$
$\lambda_2 = 18.4$	$a_2 = (0.955, -0.296, 0.011, 0.012)$
$\lambda_3 = 7.9$	$a_3 = (0.141, 0.485, 0.855, -0.119)$
$\lambda_4 = 1.0$	$a_4 = (0.260, 0.820, -0.509, 0.001)$

- (i) Obtain principal components.
- (ii) Verify that the total variance of principal components is the same as total variance of original variables.
- (iii) Obtain proportion of total variation explained by the first component and the first two components.
- (iv) Obtain the values of the first two components if the actual data of the first year be $x_1 = 25, x_2 = 86, x_3 = 66, x_4 = 186.49.$

9

4. (a) The P-matrix of a Markov chain is given below. Draw its transition diagram and obtain Pⁿ and its limiting value for large n. 10

	0.5	0.2	0
P =	0.25	0.2	0.25
	0	0.2	0.5

MMT-008

(b) The offspring distribution in a branching process is

 $p_0 = q, p_1 = 0, p_2 = p, p_r = 0, r \ge 3.$

Discuss the probability of extinction for this process.

- 5. (a) A plant producing memory chips has 3 assembly lines. Line 1 produces 30% of the chips with a defective rate 3%, line 2 produces 50% of the chips with a defective rate 4% and rest of the chips produced by line 3 have a defective rate 2%. A chip is selected from the plant.
 - (i) Find the probability that the selected chip is defective.
 - (ii) Given that the chip is defective, find the probability that the chip was produced by line 2.
 - (b) Let Σ be the variance-covariance matrix and **R** be the correlation matrix of a random vector **X**. Let T be a diagonal matrix with the elements being standard deviation of the respective variables. Show that

$$\mathbf{R} = \mathbf{T}^{-1} \sum \mathbf{T}.$$

(c) The owner of a chain of five stores wishes to forecast net profit with the help of next year's projected sales of food and non-food items. The data about current year's sales of food items, sales of non-food items as also net profit for all the five stores are available as follows :

5

MMT-008

P.T.O.

5

5

Store No.	Net Profit y (₹ in lakhs)	Sales of food items x ₁ (₹ in lakhs)	Sales of non- food items x ₂ (₹ in lakhs)
1	20	9	6
2	14	7	7
3	7	11	7
4	12	6	10
5	8	5	11

Assuming a linear regression model

 $y_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + e_i$, where i = 1, 2, 3, 4, 5.

Find

- (i) the least square estimates \hat{b} ,
- (ii) the residuals \hat{e} ,
- (iii) the residual sum of squares for the model.

6. (a) Let X ~ N₃(μ , Σ) where $\mu = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ and

$$\Sigma = \left(\begin{array}{rrr} 4 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{array} \right).$$

Obtain the following :

- (i) Marginal distribution of $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$
- (ii) Distribution of $Z = X_1 2X_2 + X_3$

MMT-008

6

(iii) Conditional density of $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$, given X_3

(iv) r_{12.3}

- (b) A machine shop needs a certain kind of machine regularly. Whenever a machine fails it is replaced immediately. Assume life time of machines follows uniform distribution in the interval [5, 10] years. Find the rate of replacement in a long time.
- (c) If $\{X(t) : t > 0\}$ is a Poisson process with rate λ and S_m denotes the duration from start to the occurrence of mth event, obtain the distribution of S_m . If $\lambda = 1$ per hour, then find the probability that the duration from start to the occurrence of third event will be less than 2 hours.
- 7. (a) On the basis of 50 observations on 4 variables, the factor loadings of the first two factors obtained through factor analysis are:

Wariahlag	Fac	tors	Communality
Variables	I	II	Communanty
X ₁	0.697	0.476	0.712
X ₂	0.748	0.445	0.758
X ₃	0.831	0.350	0.813
X ₄	0.596	0.648	0.775
Sum of squares	2 ·091	0.967	
Variance summarized	0.523	0.242	0.765

7

MMT-008

P.T.O.

4

- (i) Write linear equations for all the factors.
- (ii) Interpret the loading coefficients, variance summarized and communality values.
- (b) If interoccurrence time in a renewal process follows geometric distribution with parameter p, show that number of occurrences N_n in n time follows binomial distribution.
- (c) Let the life times X_1 , X_2 , ... be i.i.d. exponential random variables with parameter $\lambda > 0$. Let T > 0 and age replacement policy is to be employed.
 - (i) Find mean.
 - (ii) If each replacement cost $C_1 = 3$ and extra cost $C_2 = 4$, then find the long run average cost per unit time.
- 8. State whether the following statements are *True* or *False*. Justify your answers.
 - (a) The probability density function of a random variable lies between 0 and 1.
 - (b) A state in the Markov chain is transient, if the probability of ultimate return to the state is less than 1.
 - (c) If $p_0 = 1$ in a branching process, then the probability of ultimate extinction of the process will be smaller than 1.
 - (d) Posterior probabilities obtained from Bayes' theorem are larger than respective prior probabilities.
 - (e) T^2 statistics is invariant to the change of origin but not invariant to the change of scale.

MMT-008

8

1,000

6

10

6