M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

ロ1.321 Term-End Examination
December, 2017

MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note: Question no. 1 is compulsory. Attempt any four questions out of questions no. 2 to 7. Use of non-programmable scientific calculator is allowed.

1. State whether the following statements are True or False. Justify your answers with the help of a short proof or a counter-example.
$5 \times 2=10$
(a) For Legendre polynomial $P_{n}(x)$ of degree n,

$$
P_{n}(-1)=1 .
$$

(b) If $f(t)$ is continuous and possesses continuous derivatives and both $\mathrm{f}(\mathrm{t})$ and $f^{\prime}(t)$ are of exponential order as $t \rightarrow \infty$, then

$$
\mathcal{L}\left[f^{\prime}(t)\right]=\mathcal{L}[f(t)]-\operatorname{sf}(0),
$$

where \mathcal{L} denotes Laplace Transform of the function.
(c) For the test equation $y^{\prime}=\lambda y, y\left(x_{0}\right)=y_{0}$, if $\lambda<0$, we consider absolute stability and if $\lambda>0$, we consider relative stability.
(d) If the given partial differential equation is self-adjoint, then application of variation principle and the Galerkin method lead to a different matrix system.
(e) For the differential equation

$$
x^{3} y^{\prime \prime}+x y^{\prime}+2 y=0
$$

$x=0$ is irregular singular point.
2. (a) Find the Fourier cosine transform of the function

$$
f(x)=\left\{\begin{array}{cc}
3 x & 0<x<\frac{1}{3} \tag{3}\\
2-x & \frac{1}{3}<x<1 \\
0 & x>1
\end{array}\right.
$$

(b) Using generating function of Hermite polynomial $\mathrm{H}_{\mathrm{n}}(\mathrm{x})$, expand
$f(x)=3 x^{3}-4 x^{2}+6 x$ in a series of the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n} H_{n}(x) \tag{5}
\end{equation*}
$$

(c) If $f^{\prime}\left(x_{k}\right)$ is approximated by $h f^{\prime}\left(x_{k}\right)=a f\left(x_{k+1}\right)+b f\left(x_{k-1}\right)$,
find the values of a and b. What is the order of approximation?
3. (a) Use second order finite difference method to solve the boundary value problem

$$
\begin{aligned}
& y^{\prime \prime}-3 y^{\prime}+2 y=0 \\
& \text { with } 2 y(0)-y^{\prime}(0)=1 \\
& y(1)+y^{\prime}(1)=2 e+3 e^{2} \text { and } h=\frac{1}{2}
\end{aligned}
$$

Set up the system of equations to obtain the solution.
(b) Solve the initial value problem $y^{\prime}=-2 x y^{2}$, $y(0)=1$ with $h=0.2$ on the interval $[0,0.4]$ using predictor-corrector method, with predictor P and corrector C as given below :

$$
\begin{aligned}
& P: y_{k+1}=y_{k}+\frac{h}{2}\left(3 y_{k}^{\prime}-y_{k-1}^{\prime}\right) \\
& C: y_{k+1}=y_{k}+\frac{h}{2}\left(y_{k+1}^{\prime}+y_{k}^{\prime}\right)
\end{aligned}
$$

Perform two corrector iterations per step. Use the exact solution of $y(x)=\frac{1}{1+x^{2}}$ to obtain the starting value.
(c) For Bessel's function $J_{n}(n)$, show that

$$
\frac{d}{d x}\left(x^{-n} J_{n}\right)=-x^{-n} J_{n+1}
$$

4. (a) Using the Frobenius method, find the power series solution near $x=0$ of the differential equation

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}+\left(x+x^{2}\right) \frac{d y}{d x}+(x-9) y=0 \tag{6}
\end{equation*}
$$

(b) If $f(x)=0, \quad-1<x \leq 0$

$$
=x, \quad 0<x<1
$$

show that

$$
\begin{aligned}
f(x)=\frac{1}{4} P_{0}(x)+\frac{1}{2} P_{1}(x)+\frac{5}{16} P_{2}(x)- \\
\frac{3}{32} P_{4}(x)+\ldots
\end{aligned}
$$

where $P_{n}(x)$ is a Legendre polynomial of degree n.
5. (a) Using the five-point formula and assuming the uniform step length $h=\frac{1}{3}$ along the axes, find the solution of $\nabla^{2} u=x^{2}+y^{2}$ in R, where R is the triangle $0 \leq x \leq 1,0 \leq y \leq 1$, $0 \leq x+y \leq 1$. On the boundary of the triangle $u(x, y)=x^{2}-y^{2}$.
(b) Solve the integral equation

$$
\int_{0}^{\infty} f(x) \sin \alpha x d x=\left\{\begin{array}{cc}
2-3 \alpha, & 0<\alpha<1 \\
0, & \alpha>1
\end{array} .\right.
$$

(c) Explain the difference between explicit single-step method and implicit single-step method for solving the IVP

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0} \tag{2}
\end{equation*}
$$

6. (a) Solve the partial differential equation,

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}, x>0, t>0
$$

given that $u(0, t)=10 \sin 2 t$,

$$
\begin{aligned}
& u(x, 0)=0=u_{t}(x, 0), \\
& \lim _{x \rightarrow \infty} u(x, t)=0,
\end{aligned}
$$

using Laplace Transforms.
(b) Using the Schmidt method, with $\lambda=\frac{1}{6}$, find the solution of the initial value problem

$$
\frac{\partial \mathbf{u}}{\partial \mathrm{t}}=\frac{\partial^{2} \mathbf{u}}{\partial \mathbf{x}^{2}}
$$

subject to the conditions

$$
u(0, t)=0=u(1, t)
$$

and $u(x, 0)=\left\{\begin{array}{cc}2 x & \text { for } x \in\left[0, \frac{1}{2}\right] \\ 2(1-x) & \text { for } x \in\left[\frac{1}{2}, 1\right]\end{array}\right.$.
Take $h=0.2$ and integrate for two time levels.
7. (a) Find the solution of the problem
$\nabla^{2} u=0,0 \leq x \leq 1,0 \leq y \leq 1, u=x+y$,
on the boundary using Galerkin method with triangular elements and one internal node ($\mathrm{h}=\frac{1}{2}$).
(b) Using convolution theorem, evaluate

$$
\mathcal{L}^{-1}=\left\{\frac{1}{(s+1)\left(s^{2}+1\right)}\right\}
$$

where \mathcal{L}^{-1} is inverse Laplace Transform.

