No. of Printed Pages: 4

MMT-006

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

December, 2017

MMT-006 : FUNCTIONAL ANALYSIS

Time : 2 hours

Maximum Marks : 50 (Weightage : 70%)

Note: Question no. 6 is compulsory. Attempt any four of the remaining questions.

- 1. (a) Let $|| \cdot ||_1$, $|| \cdot ||_2$ be norms on a linear space X and let $\varepsilon > \theta$, $\delta > 0$ be fixed. Find conditions on the norms so that $B_1(0, \varepsilon) \subset B_2(0, \delta)$ holds.
 - (b) If || ||₁, || ||₂ are equivalent norms on a linear space X and if (X, || ||₁) is complete, prove that (X, || ||₂) is also complete.
 - (c) State the projection theorem and illustrate it on $L^2[0, 1]$ with $M = \{f \in L^2[0, 1] : f = 0$ a.e. on $[0, 1/2]\}$. 1+3

MMT-006

P.T.O.

3

3

- **2.** (a) Show that $(C_{00}, || \cdot ||_{\infty})$ is not complete. 3
 - (b) State the open mapping theorem and deduce the closed graph theorem. 1+3

I

- (c) If A is a bounded linear operator on a Hilbert space H, prove that R(A*) = H, if and only if A is bounded below.
- 3. (a) Calculate the norm of the linear functional $f \mapsto \int_{0}^{1} t f(t) dt$ on each of the spaces $(C[0, 1], || \cdot ||_{\infty}) \text{ and } (L'[0, 1], || \cdot ||_{1}).$ 2+2
 - (b) Let M be a proper closed subspace of a normed linear space X, x₀ ∉ M and d = d(x₀, M). Prove that there is a bounded linear functional f₀ on X such that || f₀ || = 1/d, f₀(x₀) = 1 and f₀(M) = 0. 3
 - (c) Show that the right shift operator S on l^2 has no eigenvalue. 3

MMT-006

2

- 4. (a) If X is an infinite dimensional space, show that the set $\{x \in x \mid || x || = 1\}$ is not compact.
 - (b) Let X be a Banach space. Show that X is reflexive, if and only if X' is reflexive.
 - (c) For an orthonormal sequence {u_n} in a
 Hilbert space H, prove the equivalence of the conditions
 - (i) $x \perp u_n$ for all n implies x = 0,

(ii)
$$\mathbf{x} = \sum \langle \mathbf{x}, \mathbf{u}_n \rangle = \mathbf{u}_n$$
 for all $\mathbf{x} \in \mathbf{H}$. 3

- 5. (a) Prove that the dual of l' is isometric to l^{∞} . 4
 - (b) If f is a bounded linear functional on a Hilbert space H, show that there is a unique y ∈ H such that f(x) = <x, y> for all x ∈ H.
 - (c) Give an example of a positive operator on l^2 . Justify your example. 2

MMT-006

4

`*3*

4

- 6. Are the following statements *True* or *False*? Justify your answers with the help of a short proof or a counter example. $5\times 2=10$
 - (a) If M is a closed subspace of an inner product space X, then $M^{\perp \perp} = M$.
 - (b) If D is a dense subspace of a normed linear space X, then $D' \simeq X'$.
 - (c) Every linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ is a compact operator.
 - (d) If a Banach space X is separable, then X' is separable.
 - (e) If λ is an eigenvalue of a unitary operator, then $|\lambda| = 1$.