No. of Printed Pages : 2

MMT-005

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

 $\square \square 471$ December, 2017

MMT-005 : COMPLEX ANALYSIS

Time : $1\frac{1}{2}$ hours

Maximum Marks: 25

- Note: Question no. 1 is compulsory. Attempt any three questions from questions no. 2 to 5. Use of calculator is **not** allowed.
- 1. State, giving reasons, whether the following statements are *True* or *False*: $5\times 2=10$
 - (a) $f(z) = \sinh z \cosh z$ is a bounded function.
 - (b) The curve defined by $z(t) = \cos t, -\pi \le t \le \pi$ is a Jordan curve.
 - (c) If f(z) = Log z, then z = 0 is an isolated singular point of f(z).
 - (d) If T be a linear fractional transformation such that T(0) = 0 and $T(\infty) = \infty$, then $T(z) = \alpha . z$ for some non-zero complex number α .

(e) If
$$f(z) = \tan z$$
, then $\oint_C f(z) dz = 0$, where $C: |z| = 1$.

MMT-005

P.T.O.

2. (a) Find the zeros and singularities of the function $f(z) = \frac{z}{4 \cos^2 z - 1}$ in $|z| \le 1$. Also

find the residue at the poles.

- (b) Expand $f(z) = \frac{1}{(z-1)^2 (z-3)}$ in a Laurent series valid for 0 < |z-3| < 2. 3
- 3. (a) Consider the region $R = \{z : |z| \le 2\}$. If f(z) = 2 - z in R, then find a point in R where |f(z)| attains its maximum value.
 - (b) Find the harmonic conjugate v(x, y) of the harmonic function u(x, y) = xy + x + 2y 5 and also an analytic function f(z) = u + iv, if f(4i) = 3 + 13i.
- 4. (a) Find the image of the lines $y = C_2$, $(C_2 > 0)$ under the mapping $w = z^2$. Identify the curve represented by the image.
 - (b) Find all solutions to the equation $\sin z = 5$. 3

5. Evaluate
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)^3}$$
 using contour integration. 5

MMT-005

2

1,500

2

 $\mathbf{2}$

3

 $\mathbf{2}$