M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination

$\square \square 471$
 December, 2017

MMT-005 : COMPLEX ANALYSIS

Time $: 1 \frac{1}{2}$ hours Maximum Marks : 25

Note: Question no. 1 is compulsory. Attempt any three questions from questions no. 2 to 5. Use of calculator is not allowed.

1. State, giving reasons, whether the following statements are True or False :

$$
5 \times 2=10
$$

(a) $f(z)=\sinh z \cosh z$ is a bounded function.
(b) The curve defined by $z(t)=\cos t,-\pi \leq t \leq \pi$ is a Jordan curve.
(c) If $f(z)=\log z$, then $z=0$ is an isolated singular point of $\mathrm{f}(\mathrm{z})$.
(d) If T be a linear fractional transformation such that $T(0)=0$ and $T(\infty)=\infty$, then $T(z)=\alpha . z$ for some non-zero complex number α.
(e) $\begin{aligned} & \text { If } f(z)=\tan z \text {, then } \\ & C:|z|=1 .\end{aligned} \oint_{C} f(z) d z=0$, where

MMT-005
2. (a) Find the zeros and singularities of the function $f(z)=\frac{z}{4 \cos ^{2} z-1}$ in $|z| \leq 1$. Also find the residue at the poles.
(b) Expand $f(z)=\frac{1}{(z-1)^{2}(z-3)}$ in a Laurent series valid for $0<|z-3|<2$.
3. (a) Consider the region $R=\{z:|z| \leq 2\}$. If $f(z)=2-z$ in R, then find a point in R where $|f(z)|$ attains its maximum value.
(b) Find the harmonic conjugate $v(x, y)$ of the harmonic function $u(x, y)=x y+x+2 y-5$ and also an analytic function $f(z)=u+i v$, if $\mathrm{f}(4 \mathrm{i})=3+13 \mathrm{i}$.
4. (a) Find the image of the lines $y=C_{2},\left(C_{2}>0\right)$ under the mapping $w=z^{2}$. Identify the curve represented by the image.
(b) Find all solutions to the equation $\sin \mathrm{z}=5$.
5. Evaluate $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{3}}$ using contour integration. 5

