M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

DDES1

M.Sc. (MACS)

Term-End Examination
December, 2017

MMT-004 : REAL ANALYSIS

Time: 2 hours
Maximum Marks : 50
(Weightage : 70\%)
Note: Question no. 1 is compulsory. Attempt any four questions from questions no. 2 to 7. Calculators are not allowed. Notations as in the study materials.

1. State whether the following statements are True or False. Give reasons for your answers.
$5 \times 2=10$
(a) An arbitrary union of closed sets in a metric space is closed.
(b) Any closed and bounded set in a metric space is compact.
(c) The interval ($-1,1$) is nowhere dense in \mathbf{R}.
(d) The function

$$
f(x, y, z, w)=\left(x^{2}-y^{2}, 2 x y, z x, z^{2} w^{2} x^{2}\right)
$$

is a continuously differentiable function on \mathbf{R}^{4}.
(e) $\quad \lim _{n \rightarrow \infty} \int f_{n} d m=\int \lim _{n \rightarrow \infty} f_{n} d m \quad$ for any sequence of measurable functions $\left[f_{n}\right.$).
2. (a) Prove that the coordinate projection maps from $\mathbf{R}^{2} \rightarrow \mathbf{R}$ are continuous, under the standard metrics on $\mathbf{R}, \mathbf{R}^{2}$.
(b) Find the partial derivatives and the total derivative of the function
$\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w})=\left(\mathrm{xy}^{2}, \mathrm{xyz}, \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{zw}^{2}\right)$ at (1, 2, -1, 2).
(c) For a sequence of non-negative measurable functions f_{n}, show that

$$
\int \sum_{n=1}^{\infty} f_{n} d m=\sum_{n=1}^{\infty} \int f_{n} d m
$$

3. (a) Let X be a connected metric space and $\mathrm{f}: \mathrm{X} \rightarrow\{0,1\}$ be a continuous map with respect to discrete topology on $\{0,1\}$. Show that, either $f(x)=1$ for all $x \in X$ or $f(x)=0$ for all $x \in X$.
(b) Show by an example that the vanishing of a Jacobian at a point is not a necessary condition for the function to be invertible at that point.
(c) Let $\mathbf{A} \subseteq \mathbf{R}$ be such that $\mathrm{m}^{*} \mathbf{A}=0$. Prove that
(i) A is measurable
(ii) $\mathrm{m}^{*}(\mathrm{~A} \cup B)=\mathrm{m}^{*} \mathrm{~B} \forall B \subseteq \mathbf{R}$.
4. (a) Define a totally bounded set in a metric space. Show that if X is a totally bounded metric space in which every Cauchy sequence converges, then X is compact.
(b) Obtain the Taylor's series expansion (up to second order) of the function $f(x, y)=x+2 y+x y-x^{2}-y^{2}$ at the point $\left(\frac{4}{3}, \frac{5}{3}\right)$.
(c) Find the components of Q under the standard metric.
5. (a) Let X, Y be metric spaces and $f: X \rightarrow Y$ be a function. Prove that f is continuous at a point x_{0} if and only if for every sequence $\left\{x_{n}\right\}$ in X converging to $x_{0}, f\left(x_{n}\right)$ converges to $f\left(x_{0}\right)$ in Y.
(b) Use the Lagrange multiplier method to find and classify the extreme values of the function

$$
f(x, y)=4 x+6 y-2 x^{2}-2 x y-2 y^{2}
$$

subject to the constraint $x+2 y=2, x, y \geq 0$.
6. (a) Define the compactness of a metric space. Prove that a finite union of compact sets in a metric space is compact. What about arbitrary union? Justify.
(b) Define Critical points, Stationary points and Saddle points of a function $f: \mathbf{R}^{\mathbf{n}} \rightarrow \mathbf{R}$. Find the critical points of the function $f: \mathbf{R}^{3} \rightarrow \mathbf{R}$ given by $f(x, y)=2 x^{4}-3 x^{2} y+y^{2}$. Check whether the critical points are saddle points.
(c) Define Time Invariant and Invariant Systems. Give an example for each.
7. (a) Prove that R^{n}, with the usual metric is a complete metric space.
(b) Can the surface whose equation is $x+y+z-\sin (x y z)=0$ be described by an equation of the form $z=f(x, y)$ in a neighbourhood of the point (0,0), satisfying $f(0,0)=0$? Justify your answer.
(c) Define a Stable System. Give an example of (i) Stable system (ii) Unstable system.

