M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS) Term-End Examination December, 2017

MMT-003 : ALGEBRA

Time : 2 hours

Maximum Marks : 50

(Weightage : 70%)

- Note: Question no. 6 is compulsory. Attempt any four questions from questions no. 1 to 5.
- 1. (a) The table below is a partial character table of a finite group in which $\alpha = \frac{1}{2}(-1 + i\sqrt{3})$ and $\beta = \frac{1}{2}(-1 + i\sqrt{7})$. The conjugacy classes are all shown.

	(1)	(3)	(3)	(7)	(7)	
X ₁	1	1	1	α	ā	•
χ_2	3	β	β	0	0	
χ ₃	3	β	β	0	0	

(i) Determine the order of the group, the number of irreducible representations and their dimensions.

(ii) Determine the remaining characters.

MMT-003

P.T.O.

8

MMT-003

- (b) Check whether 978-81-265-3228-5 is a valid ISBN number or not.
- 2. (a) Let ω and α denote the primitive third and sixth roots of unity, respectively. Prove that $\mathbf{Q}(\alpha) = \mathbf{Q}(\omega)$. Further, obtain $[\mathbf{Q}(\alpha) : \mathbf{Q}]$.
 - (b) Let $H = \{z | lm(z) > 0\}$. Check whether $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot z = \frac{az+b}{cz+d}$ defines an action of $SL_2(\mathbb{Z})$ on H or not. Further, if it is an action, find the stabiliser of i. If the given function is not an action, then define an action of $SL_2(\mathbb{Z})$ on H.
- 3. (a) Find the splitting field K of x⁴ 3 over Q.
 Also find [K : Q]. Further, does K contain a subfield which is not normal over Q ? Give reasons for your answer.
 - (b) Let $\pi : \mathbb{Z} \to \frac{\mathbb{Z}}{4} \times \frac{\mathbb{Z}}{7} \times \frac{\mathbb{Z}}{9}$ be the natural homomorphism defined by $\pi(\mathbf{x}) = (\mathbf{x} \pmod{4})$, $\mathbf{x} \pmod{7}$, $\mathbf{x} \pmod{9}$). Find a pre-image of (1 (mod 4), 2 (mod 7), 3 (mod 9)) lying in [50, 200].
- 4. (a) Show that an operation * can be defined on any non-empty set S such that (S, *) is a ~emigroup.
 - (b) D_{E_n} a non-trivial two-dimensional complex presentation of D_{10} . Check all the propertic equired.

MMT-003

۷

5

 $\mathbf{2}$

5

6

4

3

4

(c) Does $SU_2(C)$ act transitively on $C^2 \setminus \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$? Justify your answer. 3

5. (a) Find a Sylow-p subgroup of
$$GL_2(\mathbf{F}_p)$$
.

- (b) Show that if there is a Steiner system S(3, 6, n), then $n \equiv 2 \pmod{20}$ or $n \equiv 6 \pmod{20}$.
- State whether the following statements are *True* or *False*. Give reasons for your answers.
 10
 - (a) If G is an infinite group acting on a set S, then $|O_s|$ cannot be finite for any $s \in S$.
 - (b) If G is a free group, then so is $\frac{G}{H}$, where H Δ G.
 - (c) $SL_4(\mathbf{R}) \subseteq SP_4(\mathbf{R})$.
 - (d) If F is a field, so is $F \times F$.
 - (e) Every non-trivial representation of a finite group is faithful.

MMT-003

1,000

5

5