BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination
December, 2017

$\square 39 日 2$

ELECTIVE COURSE : MATHEMATICS MTE-06 : ABSTRACT ALGEBRA

Time: 2 hours
Maximum Marks: 50
(Weightage: 70\%)
Note: Question no. 7 is compulsory. Attempt any four questions from questions no. 1 to 6. Use of calculators is not allowed.

1. (a) Consider $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$, defined by $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+3$. Find a mapping $\mathbf{g}: \mathbf{R} \rightarrow \mathbf{R}$ such that $f(x)=x$ for all $x \in R$.
(b) Check whether $\mathrm{x}^{3}+\mathrm{x}+1+\mathrm{x}^{2}$ is irreducible over \mathbf{Q} or not.
(c) Let H and K be subgroups of a group G . State and prove a necessary and sufficient condition for HK to be a subgroup of G. 5
2. (a) Let G be a group of order 12 and let H and K be subgroups of G of order 4 and 6 respectively. Check whether $\mathrm{H} \cap \mathrm{K}=\{\mathrm{e}\}$ or not.
(b) Consider the ring $\mathrm{R}=\{\mathrm{f}: \mathbf{Z} \rightarrow \mathbf{Z}\}$, the set of all mappings from \mathbf{Z} to itself under the usual addition and multiplication defined as the composition of mappings. Find two non-zero mappings $f, g \in R$ such that fog $=0$ but oof $\neq 0$. Further, let I be the set consisting of those elements h of R with $h(x) \neq 0$ only for finitely many integers. Is I an ideal of R ? Give reasons for your answers.
(c) Write the permutation (1 $\left.2 \begin{array}{lll}1 & 3\end{array}\right)\left(\begin{array}{lll}2 & 3 & 5\end{array}\right)$ as a product of disjoint cycles. Is this permutation even ? Give reasons for your answer.

3
3. (a) Prove that if G is a group such that $\mathrm{G} / \mathrm{Z}(\mathrm{G})$ is cyclic, then G is abelian. Further, give an example, with justification, of a group G for which $\mathrm{G} / \mathrm{Z}(\mathrm{G})$ is not cyclic.
(b) Consider the ideal $\mathrm{I}=12 \mathrm{Z}$ of Z . Find a proper ideal J of \mathbf{Z} such that $\mathrm{I}+\mathrm{J}=\mathbf{Z}$.
(c) Give two distinct elements of $\mathbf{R}[\mathrm{x}] /\left\langle\mathrm{x}^{3}+1\right\rangle$, with justification.
4. (a) Show that if H is a subgroup of G, then so is $x H_{x^{-1}}$, where $x \in G$. Also show that H and $\times \mathrm{H} \mathrm{x}^{-1}$ are isomorphic. $\quad 5$
(b) Obtain the quotient field F of $\mathbf{Z}+(\sqrt{-3}) \mathbf{Z}$. Also find the prime subfield of F . 5
5. (a) Find the nil radical of $(P(X), \cup, \cap)$, where X is a non-empty set.
(b) Consider $S=\{\overline{1}, \overline{4}, \overline{11}, \overline{14}\} \subseteq \mathbf{Z}_{15}$. Make a Cayley table for S with respect to *, multiplication modulo 15 . Use this table to check whether ($\mathrm{S}, *$) is a group.
(c) Give an example, with justification, to show that the fundamental theorem of Algebra does not hold true for \mathbf{Q}.
6. (a) Show that $\mathbf{R}[\mathrm{x}] /<\mathrm{x}^{2}+1>\simeq \mathbf{C}$, using the fundamental theorem of homomorphism for rings.
(b) Find the number of normal subgroups of order 7 and of order 8 of a group of order 35.3
7. Which of the following statements are true and which are false ? Justify your answers either with a short proof or with a counter-example. $5 \times 2=10$
(a) If G is a group of order n, then G has an element of order n.
(b) $\quad \mathbf{Z}_{4} \simeq \mathbf{A}_{4}$.
(c) If $a_{0}+a_{1} x+\ldots+a_{n} x^{n} \in Z[x]$ is irreducible over Z, then $\bar{a}_{0}+\bar{a}_{1} x+\ldots+\bar{a}_{n} x^{n}$ is irreducible over \mathbf{Z}_{8}.
(d) If $\phi: R \rightarrow S$ is a ring homomorphism between two rings with unity, R and S, then $\phi+1$; defined by $(\phi+1)(r)=\phi(r)+1$, is also a ring homomorphism from R to S.
(e) For any two sets A and $\mathrm{B}, \mathrm{A} \times \mathrm{B}=\mathrm{B} \times \mathrm{A}$.

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)
 सत्रांत परीक्षा
 दिसम्बर, 2017

ऐच्छिक पाठ्यक्रम : गणित
 एम.टी.ई.-06 : अमूर्त बीजगणित

समय:2 घण्टे
अधिकतम अंक: 50 (कुल का : 70\%)
नोट: प्रश्न सं. 7 करना अनिवार्य है । प्रश्न सं. 1 से 6 में से किन्हीं चार प्रश्नों के उत्तर दीजिए / कैल्कुलेटरों के प्रयोग करने की अनुपति नहीं है ।

1. (क) मान लीजिए कि $f(x)=2 x+3$ द्वारा परिभाषित एक फलन $f: \mathbf{R} \rightarrow \mathbf{R}$ है। एक फलन $g: \mathbf{R} \rightarrow \mathbf{R}$ ऐसा ज्ञात कीजिए कि सभी $x \in R$ के लिए $f o g(x)=x$ हो।
(ख) जाँच कीजिए कि \mathbf{Q} पर $\mathrm{x}^{3}+\mathrm{x}+1+\mathrm{x}^{2}$ अखंडनीय है या नहीं।
(ग) मान लीजिए कि H और K किसी समूह G के उपसमूह हैं। HK के G का एक उपसमूह होने के लिए एक आवश्यक और पर्याप्त प्रतिबंध का कथन दीजिए और उसे सिद्ध कीजिए ।
2. (क) मान लीजिए कि G कोटि 12 वाला एक समूह है तथा मान लीजिए कि H और K क्रमशः कोटियों 4 और 6 वाले G के उपसमूह हैं । जाँच कीजिए कि $\mathrm{H} \cap \mathrm{K}=\{\mathrm{e}\}$ है या नहीं।
(ख) वलय $\mathbf{R}=\{\mathbf{f}: \mathbf{Z} \rightarrow \mathbf{Z}\}$, सामान्य योग तथा फलनों के संयोजन से परिभाषित गुणन के अंतर्गत \mathbf{Z} से स्वयं तक सभी फलनों के समुच्चय पर विचार कीजिए। दो ऐसे शून्येतर फलन $f, g \in R$ ज्ञात कीजिए कि $f \circ g=0$ हो परंतु $\operatorname{gof} \neq 0$ हो । साथ ही, मान लीजिए कि I, R के ऐसे अवयवों h का समुच्चय है कि $h(x) \neq 0$ केवल परिमित पूर्णांकों के लिए । क्या I, R की एक गुणजावली है ? अपने उत्तरों के लिए कारण दीजिए। 4
(ग) क्रमचय $\left(\begin{array}{llll}1 & 2 & 3\end{array}\right)\left(\begin{array}{lll}2 & 3 & 5\end{array}\right)$ को असंयुक्त चक्रों के एक गुणनफल के रूप में लिखिए । क्या यह क्रमचय सम है ? अपने उत्तर के लिए कारण दीजिए।
3. (क) सिद्ध कीजिए कि यदि G एक ऐसा समूह है कि $\mathrm{G} / \mathrm{Z}(\mathrm{G})$ चक्रीय है, तो G आबेली होगा । साथ ही, पुष्टि के साथ, एक ऐसे समूह G का उदाहरण दीजिए जिसके कि लिए $G / Z(G)$ चक्रीय नहीं है।
(ख) Z की गुणजावली $\mathrm{I}=12 \mathrm{Z}$ पर विचार कीजिए। Z की एक ऐसी उचित गुणजावली J ज्ञात कीजिए जिससे कि $\mathrm{I}+\mathrm{J}=\mathbf{Z}$ हो ।
(ग) पुष्टि के साथ, $\mathbf{R}[\mathrm{x}] /<\mathrm{x}^{3}+1>$ के दो अलग-अलग अवयव दीजिए।
4. (क) दर्शाइए कि यदि G का एक उपसमूह H है, तो xHx^{-1} भी उसका एक उपसमूह है, जहाँ $x \in G$ । साथ ही, यह भी दर्शाइए कि H और XHx^{-1} तुल्याकारी हैं।
(ख) $\mathbf{Z}+(\sqrt{-3}) \mathbf{Z}$ का विभाग क्षेत्र F प्राप्त कीजिए । साथ ही, F का अभाज्य उपक्षेत्र भी ज्ञात कीजिए ।
5. (क) $(P(X), \cup, \cap)$ की शून्य करणी ज्ञात कीजिए, जहाँ X एक अरिक्त समुच्चय है ।
(ख) $\mathrm{S}=\{\overline{1}, \overline{4}, \overline{11}, \overline{14}\} \subseteq \mathbf{Z}_{15}$ पर विचार कीजिए । *, गुणन माड्यूलो 15 , के सापेक्ष S के लिए एक कैली सारणी बनाइए। इस सारणी के प्रयोग से जाँच कीजिए कि ($\mathrm{S}, *$) एक समूह है या नहीं ।
(ग) यह दर्शनि के लिए कि बीजगणित की आधारभूत प्रमेय \mathbf{Q} के लिए सत्य नहीं है पुष्टि सहित एक उदाहरण दीजिए।
6. (क) वलयों के लिए समाकारिता के मूल प्रमेय का प्रयोग करते हुए, दर्शाइए कि $\mathbf{R}[\mathrm{x}] /<\mathrm{x}^{2}+1>\simeq \mathbf{C}$.
(ख) कोटि 35 वाले एक समूह के कोटि 7 वाले तथा कोटि 8 वाले प्रसामान्य उपसमूहों की संख्या. ज्ञात कीजिए।
7. निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से कथन असत्य ? या तो एक संक्षिप्त उपपत्ति देकर या एक प्रत्युदाहरण देकर, अपने उत्तरों की पुष्टि कीजिए। $\quad 5 \times 2=10$
(क) यदि G कोटि n वाला एक समूह है, तो G में कोटि n का एक अवयव होता है।
(ख) $\mathbf{Z}_{4} \simeq \mathrm{~A}_{4}$.
(ग) यदि $a_{0}+a_{1} x+\ldots+a_{n} x^{n} \in Z[x], Z$ पर अखंडनीय है, तो Z_{8} पर $\bar{a}_{0}+\bar{a}_{1} \mathrm{x}+\ldots+\bar{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}$ अखंडनीय होगा।
(घ) यदि $\phi: R \rightarrow S$ दो तत्समकी वलयों R और S के बीच एक वलय समाकारिता है, तो $(\phi+1)(r)=\phi(r)+1$ द्वारा परिभाषित फलन $\phi+1$ भी R से S तक एक वलय समाकारिता है।
(ङ) किन्हीं दो समुच्चयों A और B के लिए $A \times B=B \times A$ होता है।
